Interactive Volumetric Shadows in Participating Media with
Single-Scattering

Chris Wyman*

University of lowa

Shaun Ramsey"
Washington College

Figure 1: Interactive volumetric shadows rendered at 40 to 80 fps with our hybrid shadow volume and ray marching technique.

ABSTRACT

Scattering effects arising from participating media, such as smoke,
haze, and fog, dramatically add to perceived realism in renderings.
As shadows affect illumination throughout an environment, they
significantly diminish scattering effects in umbral regions. Unlike
surface shadowing, accurate volumetric shadows require simultane-
ously integrating illumination, scattering, and attenuation through-
out the volume, which proves challenging for interactive applica-
tions. We propose a method for rendering volumetric shadows in
homogeneous single scattering media that combines ray marching
and shadow volume techniques, eliminating performance deficien-
cies inherent in both. We extend this approach to interactively ren-
der shadows from textured lights and show results under two scat-
tering models. Our prototype uses graphics hardware to accelerate
shadow volume and ray marching computations. However since
our hybrid selects sample points more intelligently than brute force
techniques, it could also be applied to traditional ray tracing.

Index Terms: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1 INTRODUCTION

Computer graphics applications make simplifying assumptions
about scenes to maintain interactivity. One common assumption
limits light interactions to surfaces, ignoring contributions from
light scattered by particles in the air. Because haze, smoke, fog,
and other precipitation are common in real environments, applica-
tions often fake their effects using simplistic distance-based models
to approximately attenuate distant geometry. Recently introduced
interactive methods [19] more realistically account for single scat-
tering effects. However, these approaches ignore volumetric shad-
owing where occluders block light from scattering in umbral re-
gions.

Volumetric effects have been well studied in the context of of-
fline rendering. Typically renderers use ray marching methods to

*e-mail: cwyman@cs.uiowa.edu
Te-mail: sramsey2@washcoll.edu

accumulate illumination, Monte Carlo techniques to probabilisti-
cally scatter particles, or volumetric photon maps to account for
scattering in a two-pass process. These methods generally require
extensive computation, restricting their use in real-time rendering.

Recently, researchers have proposed a number of methods for
interactive volumetric shadows. Besides a few post-process tech-
niques [16], these techniques broadly fall into two categories, based
on either shadow volumes or ray marching. Methods using shadow
volumes [3, 15, 10] identify shadowed segments of viewing rays
that do not contribute to in-scattering. To correctly identify these
segments, however, shadow polygons must be rendered back-to-
front on a GPU, adding sorting costs to the rendering time.

Dobashi et al. [5] render quads parallel to the image plane at
varying distances from the eye. These quads cut through a 3D rep-
resentation of the participating media and are accumulated back-
to-front using blending. Blending small values generally leads to
precision errors; however, using fewer planes with larger individ-
ual contributions increases aliasing. Imagire et al. [9] address these
problems by using fewer planes and averaging illumination over
regions near each plane. Essentially, these techniques perform per-
pixel ray marching through the volume, where sampling points in
adjacent pixels are correlated by lying on planes perpendicular to
the view.

We propose a hybrid method that avoids unpredictable num-
bers of depth peeling passes in shadow volume approaches by ray
marching to identify contiguous segments of illumination along
viewing rays. We reduce ray marching costs using analytic fog con-
tributions [19] along illuminated ray segments, limiting the number
of steps by only marching between front and back shadow poly-
gons. Conceptually, this is similar to surface shadowing techniques
that restrict work to necessary regions by culling [13] and stencil-
ing [1, 4]. We also propose computing scattering at low resolution,
allowing us to extend our work to scenes with textured spotlights
for a modest cost increase. While this work currently aims to pro-
vide a method amenable to GPU implementation, future ray tracing
implementations may ease standard GPU limitations, such as only
using point light sources. For instance, the hybrid may be gener-
alized to area light sources using penumbra wedges [2] instead of
shadow volumes.

2 PARTICIPATING MEDIA REVIEW

As light travels through participating media, particles modify the
intensity through emission, absorption, in-scattering, and out-

Intensity /,

Surface Point S

Figure 2: Important paths of light in single-scattering participating media.
ds and d; are the distances from the eye to the surface and light, x is the
distance to a point on the viewing ray, and d is the distance from the light
to this point.

scattering. As a full discussion of these phenomena is beyond the
scope of this paper, we focus on a discussion of the homogeneous,
single-scattering media assumed in our work. Interested readers
can refer to standard texts (e.g., [7]) for more extensive coverage.

We use the following equation, based on the discussion by
Nishita et al. [17], in our model:

L = Laun + Lsctr

= Ly (ati)dy / d"mp(a)fl%e*"”’*)("“‘) dx, (1)
0

where the first term corresponds to the attenuated light reflected
from surface point s and the second term represents the additional
light contributed by in-scattering along the viewing ray. Ly repre-
sents the radiance reflected from s towards the eye, I the light’s
emitted radiance, d; the distance from the eye to s, and d the dis-
tance from the light to an arbitrary point on the viewing ray at dis-
tance x from the eye, as illustrated in Figure 2. k, and k; are the
media’s absorption and scattering coefficients, and p () is its phase
function.

Obviously, the integration proves challenging in interactive con-
texts. Solutions are possible using numerically preintegrated values
for each scene stored in tabular form, but more recent analytical
approximations have produced good results. Of particular interest,
Sun et al. [19] reduce this integral to two lookups into the function

F(u,v) = [y exp|—utan&]d&:

Luaar = loAo [F (41,42) = F (a1, 1] @

where F(u,v) is precomputed and stored in a texture. A; are func-
tions of 7, ds, dj, and K introduced for clarity:

Kse ™ Kydj cosy

Ao(d, _ 3

0(17’}/7’:?) 27Td1$in’)/ 5 ()

A(d;,7,%) = Kgd;siny, “)
o1 ds—djcosy

A2 (dl?/y’ dS) - 4 + 2 arctan d[Sil’l'y) (5)

Note that dj, the distance from eye to the light, is constant per frame
and K is constant in homogeneous media. Thus, for any particular
frame Ly, varies only in ds and 7, the angle between the view
ray and the vector from eye to light. The supplementary material
provides additional details about this model.

3 VOLUMETRIC SHADOWS

Various researchers [3, 15] have used shadow volumes to render
volumetric shadows. The key idea is that regions between shadow
quads have Iy = 0 and thus do not contribute to the integral in Equa-
tion 1. This allows splitting the integral into multiple integrals, one
for each illuminated interval. For the case in Figure 3:

rd) d3 ds
Loerr = 1Ty { | r@avs [Crwan | f(x)dx} ©)

Figure 3: (Left) Using a scattering model such as Sun et al.’s [19] airlight
mode, fog contributions need only be computed at shadow polygons. (Right)
Not every shadow polygon is important everywhere; rendering back-to-front
allows identification of these cases, but at significant cost.

where f(x) = %e—("a“‘f)(‘”x), Repeating Sun et al.’s [19] math,
this simplifies to two lookups into the F(u,v) texture for every il-
luminated segment along the viewing ray, where front facing poly-
gons are positive contributions and back facing polygons are nega-
tive contributions.

However, not all shadow polygons contribute to this computa-
tion. For complex models, silhouette edges not visible from the
light are extruded into extraneous polygons. Other shadow poly-
gons are valid in only certain regions (as in Figure 3). Previ-
ously, solving these problems required repeated depth peeling to
sort shadow quads [3]. This is costly for two reasons: numer-
ous passes may be needed for even simple scenes and rendering
shadow quads consumes significant fill rate even for single-pass
stencil shadows.

Other approaches use volume rendering techniques, accumulat-
ing contributions along slices through the scene [5] or ray marching
along each pixel [12]. These methods typically avoid aliasing by
adding additional slices or ray steps. While this additional work is
necessary near shadow boundaries, it is wasteful elsewhere.

3.1 Hybrid Ray Marching / Shadow Volumes

We propose a hybrid method that eliminates the sorting require-
ment of shadow volume approaches by using ray marching, but
only marches in regions where shadow volumes identify that shad-
ows exist. The basic idea can be described as follows:

1. Render a shadow map from the light;
2. Render shadow volumes, as seen from the eye, storing the
distance to the frontmost and backmost polygons;

3. Render from the eye, attenuated by ¢~ (Kat%:)ds

4. Use the airlight model [19] directly for eye pixels encounter-
ing no shadow quads;

5. Ray march from the back to front shadow quads, use the
shadow map to identify illuminated regions (such as the seg-
ment drds in Figure 3), use the airlight model (Equation 2)
for each lit interval;

6. Combine attenuated scene and airlight contributions.

We perform this algorithm in four passes, combining the last three
steps by drawing a full-screen quad, evaluating the airlight model
(step 4) for fragments without a corresponding shadow volume, per-
forming ray marching (step 5) for other pixels, and computing the
sum from Equation 1 (step 6) for all pixels.

Step 2 can be done in a single pass by outputting depth (z) for
front-facing polygons and an inverted depth (1 — z) for back-facing
polygons, either using GL_MIN blending to accumulate back and
front contributions into different color channels or using a geome-
try shader to output front and back facing polygons into different
buffers.

Since many scenes include volumetric shadows in only limited
regions, this hybrid avoids marching completely in pixels unaf-
fected by shadows. Additionally, since shadows often interact with

the media for a limited distance along any ray, this approach fo-
cuses samples in relevant regions, reducing the number of samples
required to avoid aliasing. Finally, because ray marching starts and
stops at shadow polygons, we guarantee that the frontmost and final
shadow boundaries along each ray will not exhibit aliasing.

3.2 Adding Textured Spotlights

While the above approach quickly adds volumetric shadows to
scenes with single color point lights, most scenes contain more in-
teresting illumination.

For single-colored spotlights, one could simply use the above
method, limiting computation to regions inside the spotlight (in-
stead of from the eye to point s). However this approach does not
work for multi-colored lights, for instance the illumination from a
stained glass window. In these cases, additional stepping along the
ray is necessary; as Iy is no longer constant over lit regions, it can-
not be pulled out of the integrals in Equation 6.

However, we can restrict ray marching to regions inside the light
frustum. Furthermore, inside this frustum shadowed and illumi-
nated regions can be sampled at different rates, so we use both the
light frustum and shadow volumes to reduce marching costs. In this
case, the algorithm becomes:

Render a shadow map;
Render shadow volumes, as seen from the eye;
(Kat+)ds

Render from the eye, attenuated by e~ i

Render light frustum from the eye, storing front and back dis-

tances;

Outside the light frustum, set scattering to 0;

6. Inside the light frustum, march from the back to front for pix-
els with no shadow volumes, sampling /y and scattering at
each step;

7. For pixels encountering shadow volumes, ray march along

three segments inside the light frustum: before the shadow,

between shadow volumes, and after the shadow, sampling [
and scattering for each illuminated segment;

8. Combine attenuated scene and scattering contributions.

L

W

While one would initially think shadowed ray segments could
use a coarser sampling, interestingly we often found that due to
objectionable aliasing at shadow boundaries the segment between
shadow quads needs denser sampling. And as discussed in the next
section, due to the lower frequencies in illuminated participating
media we used coarser sampling in illuminated regions.

3.3 Further Optimizations

Single-scattering models, by definition, only scatter once inside the
participating media. In relatively thick fog or haze where volumet-
ric shadows are most apparent, light often scatters repeatedly. In
real environments, this means shafts of light or shadow lose the
crisp, high-frequency edges seen under single scattering models.
This blurring allows three further optimizations to improve per-
formance. First, we render scattering contributions at a much lower
resolution than the final rendering. This reduces ray marching costs
and rendering shadow polygons consumes less fill-rate. We found
using a 2567 in-scattering image was sufficient for a 10242 final
rendering, though we apply a 3 x 3 Gaussian blur to the low reso-
lution image to eliminate aliasing of very thin volumetric shadows.
Rendering low resolution scattering and upscaling in the final
render requires care at depth discontinuities, as geometric discon-
tinuities coinciding with high contrast changes in the airlight con-
tribution appear aliased. This can be avoided by selecting the cor-
rect scattering contribution (in the final step) based upon fragment
depth and not blurring the low resolution image over depth discon-
tinuities. We essentially modify our 3 x 3 Gaussian into a bilateral
filter [20], similar to a a number of existing techniques (e.g., [18]),

though a variety of other noise reduction and antialiasing tech-
niques could also work.

Using textured spotlights significantly increases aliasing poten-
tial, as coarse steps along the ray undersample high frequencies in
the texture. Our second optimization arises from observing that
these high frequencies are rarely visible in real environments, as
multiple scattering diffuses sharp illumination edges. We use a
downsampled, blurred image of the spotlight to reduce high fre-
quency details. In some sense, the idea is similar to Sun et al.’s [19]
precomputation of scattering from environment map illumination,
though in our case it gives a precomputed ad hoc approximation of
blurring from additional scattering events that simultaneously al-
lows use to sample the volume’s illumination less frequently.

Extending this idea further, a mipmap hierarchy for the spotlight
texture can also reduce illumination aliasing by allowing determi-
nation of each ray interval’s illumination, Iy, using only appropriate
frequencies. This provides a tunable quality versus speed tradeoff,
where rays outside the shadow volumes but inside the light frustum
can be sampled arbitrarily coarsely in exchange for correspondingly
blurry illumination from scattering.

Finally, the low frequency of volumetric scattering means the
exact shadow boundaries are not so important. This allows shadow
volumes from coarse occluders to stand in for those of full resolu-
tion geometry. Taken to the extreme, one could use an axis-aligned
bounding box to approximate the occluder. However, we found that
in order to maintain an alias-free shadow boundary, the low resolu-
tion model must have silhouettes that at least coarsely approximate
those of the original. When using an axis-aligned bounding box, its
frontmost “shadow volume” does not mark the start of the shadow
region; the shadow map must be sampled to identify this boundary,
which introduces shadow aliasing.

3.4 Implementation Details

A number of implementation tricks help us achieve real-time per-
formance. For the airlight model (Equation 2), repeatedly comput-
ing the A; terms each pixel for many ray steps is costly. Because
the A; terms vary only in two dimensions (d; and) every frame,
we can re-factor Equations 2 and 6:

Lyetr = lepan [F/(COS YsXend) — F/(COS %xbegin)])

by rendering F’ into a 2D texture once per frame, removing com-
putations for the A; terms from the inner ray marching loop. Here
Ispan is the intensity over a ray step and Xpegi, and x,,q are distances
from the eye to the beginning and end of the interval. F’ is indexed
by cosy and distance x:

F/(COS%X) :Ao(dh% KS)F (Al(dlv% Kx)aAZ(dlv%x))7

which allows computation of each summation step with one texture
lookup, one subtraction, and one multiply. See the supplementary
materials for additional details.

Another improvement suggested by Imagire et al. [9] uses vari-
ance shadow maps [6] to return the probability a point is shadowed,
rather than a binary visibility. This helps remove aliasing at shadow
boundaries, though we found the additional cost to create the VSM
is not worthwhile for all scenes—simply using smaller ray steps
was sometimes as cost effective.

Finally, the key to reducing the number of ray marching sam-
ples lies in intelligently picking them. Using samples on image-
parallel planes or of uniform sizes across all pixels leads to visible
coherency artifacts in the image, similar to regular sampling arti-
facts during multisampling. We found uniformly sampling the dis-
tance between front and back shadow volumes worked well; while
adjacent pixels maintain coherency, it is along non image-aligned
surfaces that generally parallel shadow boundaries (see Figure 4).
Currently, we determine the sampling rate empirically.

snnnn = Sampling planes

Figure 4: (Left) When marching between shadow polygons, we sample the
[front-to-back distance uniformly per ray. (Right) When sampling light col-
ors, bends in the sampling planes produce clearly visible artifacts. Instead
we sample uniformly, with step size determined based on the angle between
spotlight and each pixel’s ray directions.

Figure 7: Examples from scenes with varying object and depth complexi-
ties. Note that fairy scene objects not in the shadow map do not cast volu-
metric shadows, as the shadow map determines if each ray segment is illu-
minated and we chose to light all segments outside the light frustum.

For textured spotlights, we initially uniformly subdivided this in-
terval as well. However this adds artifacts at view frustum bound-
aries, where the sampling plane changes sharply. Instead we choose
our sampling distance based on the angle between the spotlight di-
rection and the ray direction, similar in spirit to the volume ren-
dering sampling suggested by Kniss et al. [11]. See the paper’s
supplementary appendices for specifics on how we sample the ray.

4 RESULTS

Our implementation runs in OpenGL using an nVidia GeForce 8800
GTX on a 2.66 GHz multi-core Xeon processor; the timings shown
in Table 1 are for 10242 images. In order to allow a meaning-
ful comparison between different scenes we use consistent sam-
pling rates in these timings. For brute force ray marching we use
150 samples, with our hybrid we use 50 samples inside the light’s
shadow volumes, and for textured lights we take up to 150 ray steps
inside the light frustum, with up to 50 each in front of, between, and
behind the shadow volumes. These numbers were chosen to elimi-
nate aliasing in most of our examples, though in some scenes (e.g.,
the sphere) such high sampling rates are unnecessary and in others
(e.g., the YeahRight scene) higher sampling is necessary. Figures 5
and 6 examine the effect of sampling rates in our results and com-
pare our work to equivalent cost and quality ray marching.

Figures 1 and 7 show additional examples of our volumetric
shadows under both point lights and textured spotlights. Scenes
illuminated by white point lights use Sun et al.’s [19] model while
colored light scenes use Hoffman and Preetham’s [8] model, which
gave us better contrast in those scenes.

Using brute force ray marching, the computation costs depend

Figure 8: (Left) Our hybrid with a point light using Sun et al’s model
and a textured spotlight using Hoffman and Preetham’s model. (Right) Ray
traced comparison, sampling scattering 500 times per pixel. The colored
light insets show the same region, one with enhanced contrast.

mainly on image resolution and number of steps, particularly when
sampling the scattering at all 10242 pixels. Using our hybrid to se-
lectively march behaves similarly when sampling at each pixel and
the shadow or light frustums cover most of the scene (e.g. the spring
and yeah right scenes). In the case of single-color point lights our
framerates are mostly dependent on model complexity, and this de-
pendency also emerges when computing low resolution scattering
under textured lighting.

Limiting ray stepping to only between shadow polygons gives a
3-8x speedup over brute force techniques at 10242, depending on
shadow size and volume, and computing scattering at lower resolu-
tions adds another 25-100%. Performance with textured lights typi-
cally improves by a factor of 3—6 x using lower resolutions, depend-
ing on if higher resolution costs are bound more by ray marching or
geometry. Figure 6 shows that with increased samples along each
ray marching, the hybrid has an increasingly larger performance ad-
vantage as shadow volume costs remain fixed but the savings from
eliminated samples grows.

Figure 8 provides a ground truth comparison with an offline ray
tracing using the same scattering models. As a point of reference,
the ray traced results required 30 minutes per frame (but the ray
tracer was completely unoptimized). The color insets show some
remaining jaggies and halo artifacts around depth discontinuities
caused by computing in-scattering at % resolution, as well as alias-
ing caused by our use of shadow mapping for surface shadows.

The accompanying videos show that under animation our work
is quite compelling, even with scattering computed at low resolu-
tion. A 3 x 3 bilateral filter suffices to eliminate most low-resolution
jaggies from the in-scattering, even under animation, though some
very thin shadows are missed completely or blurred away.

5 DiscussION

A number of difficult cases exist for our hybrid. For scenes where
shadows cover most of the scene (e.g., indoor scenes lit by sunlight
through a window), shadow volume computations may become pro-
hibitively expensive. One possibility would invert the acceleration,

31.7 fps 18.7 fps

Brute Force Ray Marching @ 2562

Equal Quality
Equal Quality
Equal Quality

34.8 fps A

Ry
n
~
®
o
J<}
k=
@
=
2
5
=
T

Equal Time
Equal Time
Equal Time

Brute Force Ray Marching @ 2562

Figure 5: Table 1 suggests brute force may be equivalent to our hybrid, given identical sampling rates. However, since our hybrid focuses samples in more
important regions and trades some blurriness for reduced sampling in large illuminated regions, it gives higher quality for equivalent sampling. Combined
with our advantage in per-sample costs seen in Table 1, this gives a significant speed improvement when comparing results of equivalent quality.

10 samples 50 samples 100 samples 300 samples 800 samples

Figure 6: While Table 1 shows acceptable sampling rates for brute force ray marching with simple point lights, higher sampling rates are required under
complex lighting. Even for simple environments such as this illuminated sphere, more than 300 samples are needed, whereas our hybrid performs well with 75
to 100 samples.

Scene & Timings for final images rendered at 10247
Triangles Single colored light source Textured light
(results in frames No Brute force ray Ray marching in shadow | Ray marching in spotlight
per second) Volumetric | marching, 150 spp volume, 50 spp volume, 150 spp
Shadows @1024% | @256 | @1024% @2562 @1024% @256
Sphere (20k) 120.5 12.9 59.8 85.0 99.6 455 83.5
Elephant (24k) 1372 12.6 57.7 89.6 101.1 335 78.2
Spring (32k) 160.7 14.6 73.1 76.8 112.5 18.0 72.5
Bunny (70k) 135.0 11.9 61.6 475 87.5 323 81.3
Fairy (155k) 121.9 12.3 63.5 38.5 72.1 35.9 78.3
Buddha (250k) 96.1 12.2 46.9 50.2 61.4 28.3 61.7
YeahRight (755k) 573 11.1 32.8 26.3 33.8 16.1 40.9

Table 1: Comparisons of our hybrid rendering speed with brute force ray marching and a foggy rendering without volumetric shadows. All framerates are
for 10242 output images, with scattering sampled at either full 10242 or low 2562 resolution. To allow meaningful comparisons, all scenes were sampled at
the same rate for this table. This sampling frequency was chosen so that most scenes were rendered roughly without sampling artifacts, oversampling simple
scenes (e.g., the sphere) and undersampling complex scenes (e.g., YeahRight) by about a factor of 2.

using “light volumes” instead of shadow volumes to identify re-
gions of interest for scattering. In scenes with even more complex
shadowing, such as shadows from chain link fence or tree leaves,
this technique essentially degenerates to ray marching throughout
the volume (with additional shadow volume costs). This situation
is similar to that shown by the “Spring” and “YeahRight” scenes
where nearly the entire length of each ray is illuminated, though
complex fences and leaves would also increase shadow volume
costs. One solution would treat complex shadows as a texture, ap-
plying Section 3.2 and only using a subset of the shadow volumes
in regions where quality shadows are vital.

An alternative would limit objects casting volumetric shadows to
geometry near the viewer. Our experience shows volumetric shad-
ows are relatively subtle; in fact, our results use high scattering
coefficients and light intensities simply to give clearly visible shad-
ows in static images. In such foggy environments, even objects a
few meters away are invisible, so their shadows certainly will not
be discernible. In less dense media the shadows from even nearby
geometry are quite subtle, so distant shadows may be extraneous.

6 CONCLUSIONS AND FUTURE WORK

This paper presented a prototype hybrid combining ray marching
and shadow volume approaches for interactively rendering volu-
metric shadowing in single-scattering participating media models.
We extend this approach to textured light sources and provide a
number of optimizations that allow for dramatic speed improve-
ments for only a modest drop in quality. Our approach runs in
real-time for simple models and scenes and remains interactive for
highly complex objects and scenes with textured spotlights. As our
technique is based upon ray marching, rendering quality is com-
parable to ray tracing using identical scattering models and could,
in fact, be used to help accelerate traditional ray tracers. How-
ever, since we utilize cheap single-scattering models our results
are not comparable to offline images rendered with accurate multi-
scattering transport models.

A number of future directions exist, including using a shadow
map to directly extrude shadow volumes [14]. This would eliminate
all ray marching inside shadowed regions, dramatically improving
performance. However initial experimentation has shown this may
be tricky, since any errors in extruding this volume result in clearly
visible artifacts. Another direction could examine the use of culling
techniques [13] to further reduce ray marching; some culling tech-
niques appear directly applicable to volumetric shadows, but many
assume shadows only affect surfaces. Finally, further work would
be necessary for scenes specular geometry or incorporating media
with multiple scattering models.

REFERENCES

[1] J. Arvo and T. Aila. Optimized shadow mapping using the stencil
buffer. Journal of Graphics Tools, 8(3):23-32, 2003.

[2]

[3]

[4]

[5]

[6]
[7]
[8]

[9]

(10]

(11]

[12]

(13]

[14]
[15]
[16]

(17]

(18]

[19]

(20]

U. Assarsson and T. Akenine-Moller. A geometry-based soft shadow
volume algorithm using graphics hardware. ACM Transactions on
Graphics, 22(3):511-520, 2003.

V. Biri, D. Arques, and S. Michelin. Real time rendering of atmo-
spheric scattering and volumetric shadows. Journal of WSCG, 14:65—
72, 2006.

E. Chan and F. Durand. An efficient hybrid shadow rendering algo-
rithm. In Eurographics Symposium on Rendering, pages 185-196,
2004.

Y. Dobashi, T. Yamamoto, and T. Nishita. Interactive rendering of
atmospheric scattering effects using graphics hardware. In Graphics
Hardware, pages 99-107, 2002.

W. Donnelly and A. Lauritzen. Variance shadow maps. In Symposium
on Interactive 3D Graphics and Games, pages 161-165, 2006.

A. S. Glassner. Principles of Digital Image Synthesis. Morgan Kauf-
mann Publishers, Inc., 1994.

N. Hoffman and A. Preetham. Game Programming Methods, chap-
ter Real-time light-atmosphere interactions for outdoor scenes, pages
337-352. Charles River Media, 2003.

T. Imagire, H. Johan, N. Tamura, and T. Nishita. Anti-aliased and
real-time rendering of scenes with light scattering effects. The Visual
Computer, 23(9):935-944, 2007.

R. James. Graphics Programming Methods, chapter True volumetric
shadows, pages 353-366. Charles River Media, 2003.

J. Kniss, G. Kindlmann, and C. Hansen. Multi-dimensional transfer
functions for interactive volume rendering. IEEE Transactions on Vi-
sualization and Computer Graphics, 8(3):270-285, 2002.

S. Lefebvre and S. Guy. Volumetric lighting and shadowing.
http://lefebvre.sylvain.free.fr/cgshaders/vshd, 2002.

D. B. Lloyd, J. Wendt, N. Govindaraju, and D. Manocha. CC shadow
volumes. In Eurographics Symposium on Rendering, pages 197-206,
2004.

M. McCool. Shadow volume reconstruction from depth maps. ACM
Transactions on Graphics, 19(1):1-26, 2000.

R. Mech. Hardware-accelerated real-time rendering of gaseous phe-
nomena. Journal of Graphics Tools, 6(3):1-16, 2001.

K. Mitchell. GPU Gems 3, chapter Volumetric Light Scattering as a
Post-Process, pages 275-285. Addison-Wesley, 2007.

T. Nishita, Y. Miyawaki, and E. Nakamae. A shading model for atmo-
spheric scattering considering luminous distribution of light sources.
In Proceedings of SIGGRAPH, pages 303-310, 1987.

P-P. Sloan, N. Govindaraju, D. Nowrouzezahrai, and J. Snyder.
Image-based proxy accumulation for real-time soft global illumina-
tion. In Proceedings of Pacific Graphics, pages 97-105, 2007.

B. Sun, R. Ramamoorthi, S. Narasimhan, and S. Nayar. A practical
analytic single scattering model for real time rendering. ACM Trans-
actions on Graphics, 24(3):1040-1049, 2005.

C. Tomasi and R. Manduchi. Bilateral filtering for gray and color
images. In IEEE International Conference on Computer Vision, pages
839-846, 1998.

