
Appendix B: Determining Ray Sampling Size

We want to compute ∆ to subdivide our ray into appropriate sized steps. We know
the locations of the black point, the eye, and the light, as well as the light’s field of
view (φ) and the light’s viewing direction.

Based on the eye and light directions, β is easily computed. The distance d is also
easily computed. Given these we can compute the angle θ.

θ = π − (
φ

2
) − (π − β) = β −

φ

2
(1)

Then:
sin φ

∆
=

sin(β −
φ

2
)

d
(2)

Or:

∆ =
d sin φ

sin(β −
φ

2
)

(3)

sin(φ) is constant per frame and thus easily computed. Using trig identities, the
denominator becomes:

sin(β −

φ

2
) = sin β cos

φ

2
− cos β sin

φ

2
(4)

cos φ

2
and sin φ

2
are constant per frame, while cos β can be computed with a dot

product. sin β is obtained as
√

1 − cos2 β

Unfortunately, this expression for ∆ is not stable as β approaches φ

2
because the

viewing direction becomes parallel with an edge of the light view frustum. Thus, the

1



equations give very large ∆ values. These values are essentially correct, but it makes
no sense to step through the volume to a distance past the eye’s far plane. We would
like scattering samples to occur relatively near the eye, not beyond the far plane.

We have used two solutions that reduce this problem. In the first case, we compute
∆ using a constant denominator. This roughly corresponds to Figure 4 in the text,
where some rays will sample beyond the far side of the light frustum (or if the constant
denominator is too big, sampling may end too early).

The second solution clamps the denominator to some minimal value. this can lead to
visible discontinuities at the clamp point, since the sampling planes sharply change
(as in Figure 4, left, in the text). To avoid this, clamping can be done with the GPU’s
smoothstep function (a Bernstein interpolant).

2


