
Appendix A: Refractoring Precomputed F Texture
to Per-Frame F’ Texture

Scattering inside participating media is generally computed using the standard airlight
equation [Nishita et al. 1987], described in Equation 1 from the paper:

Lsctr =

∫ ds

0

κsρ(α)
I0

d2
e−(κa+κs)(d+x)dx.

Sun et al. [2005] introduced an interactive single scattering model for participating
media based upon a preintegration of a reorganized version this equation:

Lsctr(γ, ds, dl, κs) =
κsI0e

−κsdl cos γ

2πdl sin γ

∫ π
4
+ 1

2
arctan

κs(ds−dl cos γ)

κsdl sin γ

γ/2

e−κsdl sin γ tan ξdξ.

Where (as shown in Figure 2 in the paper) I0 is the light intensity, γ is the angle
between the viewing and light rays, dl is the distance from eye to light, ds is the
distance from eye to the visible surface point, and κs is the participating media’s
homogeneous scattering coefficient.

To ease readability and more readily simplify the equation, they introduced two aux-
iliary expressions A0(dl, γ, κs) and A1(dl, γ). We use a slightly modified version of
these auxilary expression (to remove dependance on I0):

A0(dl, γ, κs) =
κse

−κsdl cos γ

2πdl sin γ
,

and
A1(dl, γ, κs) = κsdl sin γ.

Using these new expressions, the integral becomes:

Lsctr(γ, ds, dl, κs) = I0A0(dl, γ, κs)

∫ π
4
+ 1

2
arctan

κs(ds−dl cos γ)

κsdl sin γ

γ/2

e−A1(dl,γ,κs) tan ξdξ.

In our paper, we introduce a third auxilary expression A2(dl, γ, ds) to help further
simplify this equation:

A2(dl, γ, ds) =
π

4
+

1

2
arctan

ds − dl cos γ

dl sin γ
,

which, after dropping the parameters for the Ai terms results in:

Lsctr = I0A0

∫ A2

γ/2

e−A1 tan ξdξ.



The key to Sun et al.’s [2005] work is the observation that this scattering integral can
be represented as a difference of factors of the form:

F (u, v) =

∫ v

0

e−u tan ξdξ,

which is an integral that can be numerically precomputed and stored in a 2D texture.
While there is no analytical solution, F (u, v) is a smooth function and behaves well
in the range of values needed for volumetric scattering.

Using this idea, the scattering function can then be defined as (Equation 2 in the
paper):

Lsctr = I0A0

[

F (A1, A2) − F (A1,
γ

2
)
]

.

This works exceedingly fast when rendering participating media without shadows,
where the only lookups into F (u, v) correspond to the eye (F (A1, γ/2)) and the visible
geometry (F (A1, A2)). Unfortunately, when stepping along this ray to sample the
illumination at various points in the volume, this equation becomes:

Lsctr = A0

N
∑

i=1

I0(i) [F (A1, A2(i)) − F (A1, A2(i − 1))] ,

where A2 must be recalculated at every step. In Sun et al.’s [2005] work the expense
of recomputing A2 was relatively unimportant, since it was computed once per pixel.
When stepping along a ray, it must be recomputed numerous times. Since each step’s
computation requires an arctan (an operation currently implemented using many
GPU instructions), simply computing A2 can become quite costly when sampling 30
or more times. Furthermore, this becomes numerically unstable for small step sizes.

We observe that when stepping along each pixel’s ray, we traverse a single column in
the precomputed F texture. A1 is only a function of dl (which is fixed for all pixels
in a given frame), κs (which is constant in homogeneous media), and γ (which is
constant inside each pixel). By computing the new texture F ′(cos γ, x) suggested in
Section 3.4 once per frame, we reduce the pixel shader computations to a minimal
set: the current distance x from the eye, and the dot product cos γ between the ray
and the direction from the eye to the light.

Because F and F ′ vary extremely smoothly, F ′ can be computed at a low resolution
(we use 2562, which is cheap enough that we did not experiment to find if lower
resolution textures remain usable). Furthermore, since the texture is continuously
recreated only useful ranges of angles and distances for each frame need be stored,



and the texture is indexed by easily computed and understandable values instead of
complex mathematical formulae.

We use:

F ′(cos γ, x) =
κse

−κsdl cos γ

2πdl sin γ
F

(

(κsdl sin γ)/umax,

(

π

4
+

1

2
arctan

x − dl cos γ

dl sin γ

)

/vmax

)

,

where umax and vmax describe the ranges of u and v in the original F texture (i.e.,
0 ≤ u ≤ umax and 0 ≤ v ≤ vmax) and all the other values can either be computed
from cos γ or are constant over the frame (i.e., κs and dl).

Rewriting this to be slightly cleaner:

F ′(cos γ, x) = A0(dl, γ, κs)F

(

A1(dl, γ, κs)

umax

,
A2(dl, γ, x)

vmax

)

,

A GLSL shader implementing this computation is included, though due to our im-
plementation’s internal storage format for F we use:

F ′(cos γ, x) = A0(dl, γ, κs)F

(

1 −
A1(dl, γ, κs)

umax

, 1 −
A2(dl, γ, x)

vmax

)

,


