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ABSTRACT
This paper is motivated by the problems posed in control
design when actuators, sensors, and/or computational nodes
connect via unreliable or unpredictable communications chan-
nels. In these cases, non-uniformities are introduced into the
underlying time domain of the system. Our central question
is whether chaos can emerge in a system as a result of
changing only the time domain. We answer the question in
the positive by producing an example. Additionally, we find
fractal structure in the emergence of chaos in this example.
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I. BACKGROUND

We use the theory of dynamic equations on time scales
(DETS), a field of mathematics that has proven useful to
describe, model and analyze systems that evolve on time
domains other than continuous time or uniform discrete time.

The theory of time scales springs from the seminal paper
of Stefan Hilger [1] in 1990. This work aimed to unify
various overarching concepts from the (sometimes disparate)
theories of discrete and continuous dynamical systems [2],
and also to extend these theories to more general classes of
dynamical systems. From there, time scales theory advanced
fairly quickly, culminating in the introductory text [3] and the
more advanced monograph [4].

A time scale T is any nonempty, (topologically) closed
subset of the real numbers R. Thus time scales can be (but
are not limited to) any of the usual integer subsets (e.g. Z
or N), the entire real line R, or any combination of discrete
points unioned with closed intervals. For example, if q > 1
is fixed, the quantum time scale qZ is defined as qZ := {qk :
k ∈ Z}∪{0}. The quantum time scale appears throughout the
mathematical physics literature, where the dynamical systems
of interest are the q-difference equations [5], [6], [7]. Another
interesting example is the pulse time scale Pa,b formed by a
union of closed intervals each of length a and gap b: Pa,b :=⋃
k [k(a+ b), k(a+ b) + a] . This time scale is used to study

duty cycles of various waveforms. A generalization of the pulse
time scale is the alternating pulse time scale Pa,b1,b2;n formed
by a union of closed intervals each of length a with n gaps of
size b1 followed by n gaps of size b2 in between the closed

intervals. We focus on the alternating pulse time scale for the
example in this paper.

To date, the bulk of engineering systems theory rests on
two time scales, R and Z (or more generally hZ, meaning
discrete points separated by distance h). However, there are
occasions when necessity or convenience dictates the use of an
alternate time scale. The question of how to approach the study
of dynamical systems on time scales then becomes relevant,
and in fact the majority of research on time scales so far has
focused on expanding and generalizing the vast suite of tools
available to the differential and difference equation theorist.
We now briefly outline the portions of the time scales theory
that are needed for this paper to be as self-contained as is
practically possible.

The forward jump operator is given by σ(t) := infs∈T{s >
t} and the graininess function µ(t) by µ(t) := σ(t) − t. The
time scale derivative, x∆(t), is defined as

x∆(t) := lim
µ∗(t)↘µ(t)

x(σ(t))− x(t)
µ∗(t)

.

A benefit of this general approach is that the realms of
differential equations and difference equations can now be
viewed as special cases of more general dynamic equations on
time scales, i.e. equations involving the delta derivative(s) of
some unknown function. The upshot here is that the concepts
in Table I apply just as readily to any closed subset of the
real line as they do on R or Z. Our goal is to leverage
this general framework against wide classes of dynamical and
control systems. Progress in this direction has been made in
control [8], [9], [10], [11], [12], [13], [14], [15], and dynamic
programming [16].

We close this section with the requisite tools from dynam-
ical systems and chaos theory neccesary for this paper.

Definition 1. The Lyapunov exponent, λ, of a sequence of
points {xn} ⊂ R is given by

λ = lim sup
n→∞

1

n

n∑
k=1

ln

∣∣∣∣dxn+1

dxn

∣∣∣∣ .
Definition 2. A sequence of points {xn} ⊂ R is a chaotic
sequence if the sequence is bounded and has a positive
Lyapunov exponent.



TABLE I. CANONICAL TIME SCALES COMPARED TO THE GENERAL CASE.

continuous (uniform) discrete time scale
domain R Z T

forward jump σ(t) ≡ t σ(t) ≡ t+ 1 σ(t) varies
step size µ(t) ≡ 0 µ(t) ≡ 1 µ(t) varies

differential operator ẋ(t) := lim
h→0

x(t+ h) − x(t)

h
∆x(t) := x(t+ 1) − x(t) x∆(t) := lim

µ∗(t)↘µ(t)

x(σ(t)) − x(t)

µ∗(t)

We refer to the continuous and forced discrete logistic
equations. The continuous logistic equation is of the form

ẋ = x(1− x).
The forced discrete logistic equation is given by

xk+1 = rkxk(1− xk).
The standard discrete logistic equation is a special case of
the forced discrete logistic equation where the sequence {rk}
is a constant sequence. The chaotic behavior of the standard
discrete logistic equation is well-studied [17], [18]. The chaotic
behavior of the forced discrete logistic equation has been
studied in the case where the sequence {rk} is periodic
and consists of two values, A and B [19], [20]. Fractal
images called Markus-Lyapunov fractals can be generated by
producing a heat map of the Lyapunov exponents of the system
in the A-B plane.

II. MAIN EXAMPLE

We consider the dynamic equation

x∆ = x(1− x) (1)

on the pulse time scale Pa,b1,b2;n. If we fix a > 0, in the
limit as b1 and b2 approach 0, the time scale approaches the
real numbers, and (1) becomes the standard continuous logistic
equation. If we fix b1 = b2 = µ, in the limit as a approaches
0, the time scale approaches µZ, and (1) becomes

x∆ =
xk+1 − xk

µ
= xk(1− xk),

or,
xk+1 = xk(µ+ 1− µxk). (2)

While this does not seem to be of the form of the standard
discrete logistic equation, we now show that (2) and the
standard logistic equation are topologically conjugate.

Lemma 1. The family of discrete time logistic maps is topo-
logically conjugate to the family of logistic equations on a
uniform time scale µZ, where µ > 0, as defined in (2).

Proof: For µ > 0, f(x) = x(µ+1−µx) and g(x) = (µ+
1)x(1−x) are topologically conjugate via the homeomorphism
h(x) = (µ/(µ+ 1))x. This follows since

h(f(x)) =
µ

µ+ 1
x(µ+ 1− µx)

= µx

(
1− µ

µ+ 1
x

)
= (µ+ 1)

µ

µ+ 1
x

(
1− µ

µ+ 1
x

)
= g(h(x)).

x0

T

x1 = F (x0; a, b1) x2 = F (x1; a, b1) x3 = F (x2; a, b2)

b1 b2 b1a

. . .

Fig. 1. Generating a sequence of representative values from an alternating
pulse time scale, Pa,b1,b2;1

As the sign of the Lyapunov exponent for unimodal maps
on a closed interval is preserved under topological conjugacy,
[21] with Lemma 1, we see that the problem we are consider-
ing subsumes the cases of the discrete and continuous logistic
equation, but is not limited to these cases.

The discrete-time logistic equation is chaotic for certain
values of µ, but the continuous-time logistic equation is not
chaotic. It is therefore natural to ask how the chaotic behavior
emerges. Because both R and µZ are limiting cases of time
scale of Pa,b1,b2;n, we use the family of alternating pulse time
scales as a natural way to examine the cases that are neither
purely continuous nor purely discrete.

Chaos is a fairly new topic of study in the time scales
literature [22], so we use a definition of chaos that is specific
to Pa,b1,b2;n. In the future we hope to find a definition of chaos
that is consistent with arbitrary time scales.

Definition 3. We say that the dynamic equation x∆ = f(x) on
the time scale Pa,b1,b2;n is chaotic if the sequence generated
by evaluating the solution of the dynamic equation at the left
endpoint of each successive continuous interval in the time
scale is a chaotic sequence.

In light of Definition 3, we seek a difference equation
which generates the solution of (1) evaluated at the left
endpoint of each continuous interval. We find the solution of
(1) evaluated at the left endpoint of the next continuous interval
after a gap of size b obeys the difference equation

xn+1 =
eaxn

(
(ea − 1)xn − bxn + b+ 1

)
((ea − 1)xn + 1)2

:= F (xn; a, b).

(3)
One can arrive at the solution at the left endpoints of the closed
intervals in Pa,b1,b2;n using the map F with different values
of b. This is shown in Figure 1. Additionally, using standard
tools in discrete chaos theory [18], we can easily calculate
the Lyapunov exponent of the solution evaluated at the left
endpoints.
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Fig. 2. Cobweb plot of the dynamics of (1) on a pulse time scale P.23,3.17

with an initial value x0 = 0.58.

For example, consider the case where b1 = b2 := b, that is,
when the time scale is Pa,b. In this case, we see that certain
values of a and b, such as a = 1, b = 2, the Lyapunov
exponent of F is negative, and hence the system is not chaotic.
Meanwhile, when a = 1, b = 5, the the Lyapunov exponent
of F is positive and hence the system is chaotic.

III. FRACTAL STRUCTURE

We now show that fractal structure in the Lyapunov expo-
nents exists within the b1-b2 space. To generate this fractal,
we require bounds on the values of b for a fixed a where the
Lyapunov exponent of the system can possibly be positive.

For the analysis of the upper bound, we examine the map
F defined in Equation (3) in the xn-xn+1 plane, as motivated
by the cobweb plot in Figure 2. For the solution to stay in
the first quadrant of the plane, we require that the maximum
output of F is less than or equal to the x-intercept of F . The
maximum output of F can be found to be equal to

M(b; a) =
b+ 1

eab− ea + b+ 1
,

while the positive x-intercept of F is given by

c(b; a) =
b+ 1

−ea + b+ 1
.

Setting M(b; a) = c(b; a), we see that for a fixed a, there are
three solutions. Of these three solutions, one is positive. The
positive solution of the equation M(b; a) = c(b; a) gives us an
upper bound

U(a) =

√
e2a + 8ea + ea + 2

2
.

For the analysis of the lower bound, we are motivated
by the bifurcation diagram for the system. It is well-known
that a period-three solution implies chaos. We can see in the
bifurcation diagram of Figure 3 that period three cycles do
exist. Finding the minimal value of b for which a period-three
solution emerges is challenging [17]. Instead, we solve for the
location of the first bifurcation as a sufficient lower bound.
To do so, we solve F 2(x; a, b) = x. The two positive, non-
constant solutions are conjugate with the radicand

h(a, b) = e2ab4 + 2eab3 − 2e3ab3 − 2eab2 − 2e2ab2 − 2e3ab2

+ e4ab2 + 2e4ab− 2e2a + e4a + b2 − 2b+ 1.

Fig. 3. Bifurcation diagram for a = 1.4. Notice that the first bifurcation
occurs at b = ea + 1 ≈ 5.055.

The first bifurcation occurs when the radicand changes sign
from negative to positive. The location of the first bifurcation,
and hence the lower bound, is given by

L(a) = ea + 1.

Given a specific value of a, there is a class of pulse time
scales Pa,b, with L(a) ≤ b ≤ U(a), where the Lyapunov
exponent of (1) can possibly be positive. To generate fractal
images, we extend these bounds to both b1 and b2 for the
alternating pulse time scale Pa,b1,b2;n. Figure 4 shows a heat
map for the Lyapunov exponent of (1) for two different values
of a in the b1-b2 plane. It is worth mentioning that each point
in the plane, and hence every pixel in the images in Figure 4,
represents an alternating pulse time scale.

The Lyapunov exponent is computed numerically for each
pixel in the images in Figure 4. Given Pa,b1,b2;n, the value
of xN is computed, for N = 120. We then use the next
p = 12000 values of {xk} to compute the Lyapunov exponent.
These values of N and p produce high-fidelity images.

The colors in these images correspond to a heatmap based
on the Lyapunov exponent of the time scale in that pixel.
Positive Lyapunov exponents, and hence chaotic systems, are
shaded in blue. Negative Lyapunov exponents close to zero are
bright yellow. The heatmap darkens to dark red as Lyapunov
exponents decrease. Regions of the same color in the non-
chaotic region represent time scales with the same Lyapunov
exponent and form iso-curves in the image.

IV. CONCLUSION

The same dynamic equation can have entirely different
behavior with a small change in the time domain T. This has
implications for systems which may experience fluctuations in
timing. There is a fractal structure to the qualitative behavior of
the solution depending on the underlying time domain. We are
able to see this fractal structure in a heat map of the Lyapunov
exponent of the logistic equation on the time scale Pa,b1,b2;n

in the b1 − b2 plane.

The fractal images produced in this paper are similar to
the Markus-Lyapunov fractal. Indeed, the family of Markus-
Lyapunov fractals are equivalent, in the sense of topological
conjugacy, to the family of fractals described in this paper in
the limit as a→ 0+. In this light, our work expands upon the
work of [20] with a few notable improvements. We make an
array of one million values rather than 5000, with equidistant
arguments on the interval from L(a) to U(a). Whereas some



Fig. 4. The heat map of the Lyapunov exponent for system (1) on the time scale Pa,b1,b2;6 in the b1-b2 plane with L(a) ≤ b1, b2 ≤ U(a). In the left image,
a = 0.1, while in the right image, a = 4.9.

pixels in the previous work are calculated by interpolation,
each pixel in our image is computed directly. We use 12000
iterations for N in the Lyapunov exponent calculation, al-
though fewer iterations may still produce visually pleasing
results. Finally, we compute 120 beginning iterations of xn
before computing the exponent to allow fleeting xn values
to be discarded. Since we compute more iterations, we more-
accurately represent the chaotic region than the previous work.
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