
Shell Maps

Serban D. Porumbescu∗ Brian Budge∗ Louis Feng∗ Kenneth I. Joy∗

Institute for Data Analysis and Visualization
Computer Science Department
University of California, Davis

(a) (b) (c)

Figure 1: Inspired by the pâte-de-verre techniques of glass sculpting, the whale’s-tail vase is modeled by scaling the tail and
placing it onto a glass “bead.” The geometry of the tail and bead is textured around the base, and the whale’s tail is used for
the cap of the vessel. The full vase is shown in (a), a zoomed image in (b), and the wireframe detail of the model in (c).

Abstract

A shell map is a bijective mapping between shell space and
texture space that can be used to generate small-scale fea-
tures on surfaces using a variety of modeling techniques. The
method is based upon the generation of an offset surface and
the construction of a tetrahedral mesh that fills the space be-
tween the base surface and its offset. By identifying a cor-
responding tetrahedral mesh in texture space, the shell map
can be implemented through a straightforward barycentric-
coordinate map between corresponding tetrahedra. The gen-
erality of shell maps allows texture space to contain geo-
metric objects, procedural volume textures, scalar fields, or
other shell-mapped objects.

Keywords: texture mapping, displacement mapping, ray
tracing, volumetric textures, near surface parameterization

1 Introduction

Today, the realism required in computer graphics applica-
tions necessitates fine detail on many surfaces in a model.
Detail is commonly represented by two-dimensional textures
[Blinn and Newell 1976], bump mapping [Blinn 1978], or dis-
placement mapping [Cook et al. 1987] applied to objects,
polygonal meshes or higher-level primitives. These methods
cannot represent the fine-scale surface geometry that is an

∗e-mail:{sdporumbescu, bcbudge, zfeng, kijoy}@ucdavis.edu

integral component of the appearance of many real-world
materials and objects. While most textured surface repre-
sentations work well for objects of simple topology, they are
not practical for representing objects with fine-scale geomet-
ric detail. It is necessary to address volumetric methods for
textures, which require a three-dimensional parameteriza-
tion.

Therefore, we think of “thick surfaces” and methods to ap-
ply three-dimensional texture or geometric detail at a fine
scale on these surfaces (Figure 1). We consider the volume
of space between two surfaces, develop functions that iden-
tify this region with three-dimensional texture space, and
develop techniques to model three-dimensional detail.

This paper introduces shell maps, a method that combines
texture and geometry methods to represent fine-scale com-
plex surface detail - extending the concepts of volumetric
textures and displacement maps. A shell map is a bijective
(one-to-one) mapping between shell space and texture space
that can be used to generate fine-scale features on surfaces,
see Figure 2. Given a base surface S, we generate an offset
surface So that has the same structure as S. Shell space is
the area between these two surfaces. Utilizing the identi-
cal structures of S and So, we tile shell space with prisms,
each of which has a corresponding prism in texture space.
Breaking these prisms into tetrahedra, we generate a direct
correspondence between tetrahedra in shell space and tetra-
hedra in texture space. The shell map is then defined by the
barycentric coordinates of the corresponding tetrahedra.

These maps allow considerable flexibility in the types of ob-
jects that can be placed in texture space. Texture space
can contain geometric objects, procedural volume textures,
scalar fields, or other objects that have been shell mapped.
The mapping is bijective, allowing the use of both feed-
forward rendering applications and ray-tracing applications.
We illustrate the use of this mapping in feed-forward appli-
cations utilizing geometry as generalized displacement maps,
and in ray-tracing applications with procedural textures.



Figure 2: Shell space is the region between a base surface
and an offset surface to the base. A shell map is a one-to-one
function between texture space and shell space.

Section 3 presents the construction of a shell map includ-
ing offset surface generation, prism and tetrahedra corre-
spondence, and barycentric coordinate mapping, all of which
combine to allow the definition of the bijective map. Section
4 discusses modeling and rendering issues using the shell-
mapping technique, and Section 6 details results of the use
of the algorithm.

2 Related Work

Several research groups have focused on the problem of gen-
erating fine-scale detail on surfaces. Initial efforts to map
planar textures [Blinn and Newell 1976; Blinn 1978] are
now a standard component of all graphics processors and
systems. Unfortunately, these methods do not map three-
dimensional fine detail to surfaces, and recently the focus
has shifted to volumetric methods.

Most volumetric methods define a shell volume about a sur-
face and use mappings to transfer from texture space to shell
space. Kajiya and Kay [Kajiya and Kay 1989] were the
first to introduce volumetric textures. Their methods utilize
volumetric data sampled on a regular grid, and trace rays
through a shell volume on a surface. Rays that intersect the
shell are transformed to texture space and traced through
the sampled data grid. Neyret [Neyret 1998],who greatly
expanded the types of objects used for volumetric textures,
used a similar strategy. Once the rays are transformed to
texture space, the problem reduces to an isosurface genera-
tion problem in volume rendering [Levoy 1988]. Perlin and
Hoffert’s hypertextures [Perlin and Hoffert 1989] are ren-
dered similarly.

Cabral et al. [Cabral et al. 1994] and Westermann and
Ertl [Westermann and Ertl 1998] have developed slice-based
methods for volume rendering applications, and this method
has been adapted by several researchers for volume tex-
ture methods in interactive applications. Meyer and Neyret
[Meyer and Neyret 1998] utilized this approach to improve
the speed of the ray-tracing approach of [Neyret 1998] and
to utilize graphics hardware. Peng [Peng 2004] and Peng et
al. [Peng et al. 2004] used the slice-based methods in an in-
teractive system that can be used for modeling both surface
models and volumetric textures.

Displacement mapping was introduced by Cook et al. [Cook
et al. 1987] in their description of the REYES image architec-
ture. This technique explicitly models surface displacement
by height fields. Smits et al. [Smits et al. 2000] describe
methods to make displacement mapping reasonable for ray

Figure 3: Prisms in shell space correspond to prisms in tex-
ture space.

tracing. Wang et al. [Wang et al. 2004] describe generalized
displacement maps. Their method is a powerful precompu-
tation method for adding displacement geometry and global
illumination features onto surfaces.

Chen et al. [Chen et al. 2004] model an object as a shell
layer and a homogeneous inner core. The computation of
surface radiance from the shell layer is accomplished through
shell texture functions (STF) which describe radiance fields
based on precomputed fine-level light interactions. This en-
ables their system to map fine-scale structures with advanced
lighting features onto arbitrary surfaces.

We present a straightforward and powerful method for map-
ping three-dimensional regions containing textures or geom-
etry into regions between surfaces and their offsets. The
mapping is bijective which allows the use of applications that
map shell-space points to texture space, and texture-space
points to shell space. This method allows many object types
to be placed directly into texture space, greatly expanding
the detail that can be created on surface models.

3 Shell Maps

Shell maps provide a general technique to map a three-
dimensional volume onto a surface. They provide a way to
model a thick layer of “skin” containing complex topological
details, and map these details to a surface. We refer to the
original surface for which we construct a shell map as the
base surface S. We assume that S is a triangulated mesh
with texture coordinates assigned to each mesh vertex. Shell
space is a bounded region between S and a constructed off-
set surface So. The shell map establishes a correspondence
between points in texture space and points in shell space, as
shown in Figure 2.

Triangles in So correspond one-to-one with triangles in S.
By connecting the vertices of corresponding triangles, we
form prisms in shell space. Each prism has a corresponding
prism in texture space, generated by using the texture co-
ordinates of the vertices of the shell-space prism (Figure 3).
To achieve a consistent parameterization, we split the prisms
into tetrahedra, using a technique that preserves mesh con-
tinuity. The mapping is established through the barycentric
coordinates of corresponding tetrahedra.

Shell maps are very flexible. Texture space can contain ge-
ometric objects, procedural volume textures, scalar fields,
or other shell mapped objects. Once the correspondence is
established, a variety of existing rendering techniques can
be used to render surfaces with shell maps. Shell mapped



objects can be used in a global illumination algorithms such
as photon mapping [Jensen 2001] and can naturally interact
with other objects by casting shadows and caustics. Hard-
ware accelerated rendering is also possible because geometry
in texture space can be transformed into object space and
rendered directly.

3.1 Offset Surface Generation.

To enable the correspondence between shell space and tex-
ture space, we first generate an offset surface So with the
following properties:

• S and So must have the same number of triangles and
the same mesh connectivity. Each triangle T ∈ S must
be associated with a unique triangle To ∈ So. Each
vertex v ∈ S must be associated with a unique vertex
vo ∈ So.

• So should have no self intersections and should not in-
tersect S.

For a few objects, e.g., spheres, ellipsoids, and cylinders,
such offsets are trivial to generate. However, for general
surfaces represented by triangle meshes, an offset surface is
difficult to construct. Offset surface generation approaches
can be found in the mesh generation field [Bernd and Plass-
mann 2000], in medical imaging [Yezzi and Prince 2002],
and in computer-aided geometric design [Farin 1998]. The
methods of Cohen et al. [Cohen et al. 1996], who generate
an approximate offset surface for simplification of complex
polygonal models, and Peng et al. [Peng et al. 2004], who
utilize a point-to-surface distance function to generate dis-
placements, generate an offset surface that satisfies the nec-
essary properties for shell maps.

We employ the envelope generation algorithm of Cohen, et
al. [Cohen et al. 1996] as it provides a nice balance between
ease of implementation and generality. Their method pre-
serves the topology of the generated offset surface, while
maintaining a correspondence between vertices on the orig-
inal surface and vertices on the offset.

First, So is generated by duplicating S. This establishes the
basic correspondence between triangles and vertices in the
two meshes. The vertices of So are assigned the same tex-
ture coordinates as the corresponding vertices of S. Each

vertex v of S is assigned a “direction” vector ~d, which is
a linear combination of the normal vectors of the triangles
of which v is a vertex. So is then displaced away from S
by iteratively moving vertices vo of So along the direction
vectors associated with the corresponding vertex v of S. An
attempt is first made to displace a vertex the full offset dis-
tance specified by the user. Using an octree, the algorithm
efficiently detects whether the vertex move is valid or if it
leads to self intersection. If the vertex displacement leads
to self-intersection, the algorithm rejects the displacement
and begins an adaptive stepping procedure along the direc-
tion vector at a fraction of the user-specified offset distance.
This procedure terminates with a final vertex offset that en-
sures no self-intersection and no degenerate triangles. See
Cohen et al. [Cohen et al. 1996] for additional details.

For fine-surface detail a “constant-distance” offset surface is
best to keep the detail consistent over the surface. Cohen’s
algorithm generates an acceptable offset except in regions of
extreme concavity, where the offset surface may deviate from

the true offset. Arbitrary offset surfaces can be manually
constructed and used to generate the shell map as long as
they satisfy the two properties above. If detail distortion is
desired, the offset surface can be manually constructed and
may substantially deviate from the true surface offset. In
this way, the offset surface So can be used as a modeling
tool.

Note on offset self intersection. Preventing self inter-
section of the offset surface is necessary to create a bijective
mapping (see Section 3.4). However, for applications with
overlapping (e.g., fur or hair) or self intersecting structures
a bijective mapping is not always necessary. To guaran-
tee that unintuitive overlapping geometry is not generated
when ray tracing isosurfaces, bijectivity, and therefore non-
overlapping adjacent tetrahedra should remain a constraint.
It may be desirable to relax the constraint for non-adjacent
tetrahedra (the ends of a horseshoe for example), to allow a
natural “growing together” of surfaces. If overlapping sur-
faces are not a concern, naturally the bijectivity constraint
can be lifted.

3.2 Prisms and Tetrahedra Construction

Given an offset surface So to S, we generate prisms in shell
space by connecting the vertices of triangles in S with cor-
responding triangles in So. Each prism P is bounded by
two corresponding triangles and three (generally non-planar)
quadrilaterals.

Each P has a corresponding prism Pt in the (u, v, w) coor-
dinate system of texture space. Assume that P is defined
by the two triangles T and To, where T has vertices v1, v2,
and v3, and To has vertices vo,1, vo,2, and vo,3. Then Pt is
defined by two texture space triangles Tt and To,t, where Tt

has vertices

(u1, v1, 0), (u2, v2, 0), and (u3, v3, 0)

and To,t has vertices

(u1, v1, k), (u2, v2, k), and (u3, v3, k),

where the (ui, vi) coordinates are the two-dimensional tex-
ture coordinates of the respective vertices of T in the base
surface. The height, k, of texture space is computed to pre-
serve scale between texture space and shell space as

k = at/a ∗ h

where at and a are the average of the triangle edge lengths of
the base surface in texture space and shell space respectively.
The height, h, is the maximum offset height in shell space.

Texture-space prisms are right triangular prisms, but shell-
space prisms are generally non-convex (They can contain
non-planar quadrilateral faces). This lack of prism convex-
ity precludes the use of generalized barycentric coordinate
techniques [Warren et al. 2003] which require convex poly-
hedra as input. To create a robust mapping (Section 3.4) we
split the prisms into three tetrahedra by triangulating the
three quadrilateral faces, see Figure 4 (Note that different
triangulations may lead to slightly different shell maps). By
splitting corresponding prisms P and Pt in the same way, we
establish a correspondence between tetrahedra in shell space,
and tetrahedra in texture space, where each tetrahedron T
in shell space has a unique corresponding tetrahedron Tt in
texture space.



Figure 4: Prisms are split into three tetrahedra. Prisms
can be split in six ways, depending on the direction of the
triangulation of the quadrilateral faces. The six splits can be
characterized with labels (FRR, RFR, RRF, RFF, FRF, and FFR)
depending on the triangulation of the quadrilateral faces.

3.3 Maintaining Continuous Tetrahedral Meshes

To generate a continuous bijective mapping between shell
space and texture space, it is important to define and main-
tain a consistent tetrahedral mesh. Each prism P can be
split into three tetrahedra in six ways. Consider two neigh-
boring prisms P1 and P2 that share a non-planar quadrilat-
eral face F . It is possible to naively split P1 and P2 sepa-
rately into tetrahedra such that they have different triangu-
lations for F . This inconsistency must be avoided, as it will
introduce a discontinuity into the mapping.

To construct a consistent tetrahedral mesh from the prism
mesh, we use an algorithm similar to the rippling algorithm
described by Erleben and Dohlmann [Erleben and Dohlmann
2004]. We label the edge that splits a quadrilateral of a
prism as either rising (R) or falling (F), see Figure 4. There
exist six possible configurations of the edges of a prism such
that the prism can be tessellated into three tetrahedra: FRR,
RFR, RRF, RFF, FRF, and FFR, each configuration having two
Rs and one F, or two Fs and one R. Configurations FFF and
RRR do not lead to valid tetrahedralizations. Consistent ad-
jacent prisms should have different labels on the common
quadrilateral. Tetrahedra patterns are assigned per prism
by traversing the base triangle in a counter clockwise di-
rection. To split a prism, we assign a base surface triangle
a random pattern (e.g., FFR) if none of its neighbors have
been previously assigned a pattern. If a neighboring edge
has already been assigned we choose the opposite value.

If an inconsistency arises during the split of a prism P , the
conflict is resolved by flipping the triangulation of a quadri-
lateral in one of its neighbors. Two inconsistencies can be
generated in this process:

• two adjacent prisms have identical labels on a shared
quadrilateral face, or

• a prism is given a configuration with three Fs or three
Rs, which implies that the prism cannot be split into
three tetrahedra.

Given an inconsistent prism P , we resolve the inconsistency
by flipping the triangulation of an adjacent quadrilateral in
one of its neighbors P1. If the change introduces a new in-
consistency for P1, a new neighbor P2 of P1, P2 6= P1, is ran-

Figure 5: A two-dimensional description of the rippling al-
gorithm. The red triangle represents a prism with incon-
sistencies in (a). No consistent label can be applied to this
triangle. The inconsistencies are resolved by assigning a la-
bel (RFF) and flipping the label on an adjacent edge. This
creates an inconsistency in the red triangle in (b). Flipping
another edge in (c) resolves the inconsistencies.

domly chosen and the triangulation of the adjacent quadri-
lateral of P2 is flipped. This “rippling” propagates the in-
consistency away until all prisms are consistent. See Figure
5 for a pictorial description of this process. We use a depth-
first search through adjacent prisms until all inconsistencies
are resolved. In practice, the procedure converges rapidly, as
there are six possible configurations for each prism. When
a conflict arises only a few steps are needed to resolve the
inconsistency. We do not have a proof that this rippling
approach to resolve inconsistencies always converges or that
there is always a solution. However, we have never encoun-
tered a case where the algorithm did not converge quickly.

Implementation Note. Once all prisms have been as-
signed tetrahedra patterns, actual tetrahedra can be ex-
tracted by using a lookup table for each of the six patterns.
Our implementation uses a simpler approach based on the
four patterns (FF, FR, RR, and RF) that can arise when look-
ing at two edges of any of the six tetrahedra split cases. We
construct each of the three tetrahedra in a prism by iterating
counter clockwise around the base of the prism and looking
at the current edge tag (which is either F or R) and the next
counter clockwise edge tag (which is either F or R). This al-
lows us to easily choose the four vertices of our tetrahedron
for each of the three edges of the base triangle. We found
this approach easier and less error prone than constructing
the tetrahedralizations for each of the six cases separately.

3.4 Shell Mapping Function

Given a tetrahedron T in shell space, and its corresponding
tetrahedron Tt in texture space, any point p in T can be
associated with a unique point pt in Tt using barycentric
coordinates.1 That is, if B(T,p) defines the barycentric co-
ordinates of p in T , and φ(T, α) defines the point in T with
barycentric coordinates α, then

pt = φ(Tt, B(T,p)), and

p = φ(T, B(Tt,pt))

establishing the bijective mapping between shell space and
texture space.

1If v1, v2, v3, and v4 are the vertices of a tetrahedron T , and
p is a point in T , then the barycentric coordinates (α1, α2, α3, α4)
of p in T are defined such that p = α1v1 + α2v2 + α3v3 + α4v4,
where α1 + α2 + α3 + α4 = 1.



Once the correspondence is established, we map points from
shell space to texture space using a combination of point-
in-tetrahedron queries and barycentric coordinates. Given a
point p in shell space, we determine the prism P and tetra-
hedron T that contains p. If α is the barycentric coordinate
of p in T , then the texture-space point pt that corresponds
to p is given by pt = φ(Tt, α), where Tt is the tetrahedron
corresponding to T in texture space.

Similarly, we map points from texture space into shell space
using a combination of point location queries and barycentric
coordinates. However, since prisms in texture space are right
triangular prisms, we cast this problem to a point location
query in the plane by projecting pt to the plane w = 0 in
texture space, and search against the base of the prisms in
two-dimensions.

Algorithms exist that can solve the point-in-triangle search
in O(log N) time using O(N) space [Kirkpatrick 1983; Sar-
nak and Tarjan 1986]. To reduce memory requirements, we
use the point location algorithm of Guibas and Stolfi [Guibas
and Stolfi 1985] with the modifications presented by Brown
and Faigle [1997]. Brown and Faigle’s modifications guaran-
tee algorithm termination and provide a heuristic for worst
case look ups of O(

√
N). Using this method to locate the

base triangle, we compute the barycentric coordinates for pt

with respect to the three tetrahedra associated with the lo-
cated prism, and this identifies the tetrahedron that contains
pt.

4 Modeling and Rendering with Shell Maps

Geometric objects such as triangle meshes, subdivision sur-
faces, or even other shell mapped objects can be placed in
texture space and mapped directly into shell space. Since
shell space is represented by a tetrahedral mesh, we use the
shell map to access the geometry stored in corresponding
texture-space tetrahedra, map this geometry to shell space,
and render it using the graphics pipeline.

We can use shell-mapped models in the design of geometry
textures. We first use the shell-mapping technique to gener-
ate a polygonal model. This new model is then inserted into
texture space, and a new shell map can cause this polygonal
detail to be mapped to a new surface.

Procedural and geometry textures can be rendered using ray
tracing. In previous methods [Kajiya and Kay 1989; Neyret
1998; Perlin and Hoffert 1989; Ebert et al. 2003], rendering is
accomplished by transforming world-space ray segments to
texture space and by marching rays through texture space.
In our method, rays intersect either the offset surface or the
base surface. The intersection determines the tetrahedron
the ray enters, along with the entrance and exit point. The
ray is marched in shell space, and points are transformed
to texture space for density calculations and ray-surface in-
tersection calculations. In this way, we effectively trace a
curved ray in texture space, see Figure 7. This allows inter-
action between the element of the procedural texture, and
results in a higher-quality solution than those that use linear
marching in texture space [Wang et al. 2004; Neyret 1998].

The triangles of the base and offset surfaces contain links
to their associated prism. Once a tetrahedra has been in-
tersected, neighboring tetrahedra can be quickly accessed as
the ray marches through shell space.

Figure 7: Rays intersect tetrahedra in shell space (a). Rays
are marched in shell space, and points are transformed to
texture space for density calculations. This method effec-
tively traces curved rays through texture space (b).

Sampling is important in ray marching algorithms. If the
step size is too large, sampling artifacts (aliasing) can occur.
If the step size is too small, fewer aliasing artifacts occur,
but rendering becomes computationally expensive. In our
method, each object in texture space contains a predefined
base step size – defined such that desired features will not
be missed. We utilize a binary search procedure along the
ray to find ray-surface intersections.

Shell mapping does not require regular grid sampled volumes
and can evaluate procedural textures directly during ren-
dering. This avoids many of the aliasing and interpolation
problems encountered in previous volume texture mapping
approaches [Chen et al. 2004; Peng et al. 2004; Wang et al.
2004; Neyret 1998], and also avoids the increase memory
requirements of these systems.

5 Discussion

The main drawback of shell mapping is that it inherits the
limitations of its two main building blocks: texture mapping
and offset generation. Minimizing distortion in 2D texture
mapping techniques is ongoing research. Shell mapping is es-
sentially a texturing technique and many of the same issues
(e.g., shearing, warping, squishing and stretching in high
curvature regions, and discontinuities across texture bound-
aries) may result. Distortions from 2D texture mapping can
be observed in Figure 6 and in parts (a) and (b) of Figure 10.

Generating offset surfaces that are uniform over an entire
surface is a challenging problem for surfaces with concave
regions. In Figure 10, part (c), the surface pinches back on
itself and results in a nonuniform displacement of the offset
surface and squished geometry in the pinched area. Shell
mapping is sensitive to offset height in addition to distor-
tion induced by 2D texture mapping of the base surface. As
shown in Figure 9 the distortion of the shell mapped cylin-
ders increases as the height of the offset increases.

The quality of the resulting tetrahedral mesh in shell space
is dependent on the quality of the original base surface trian-
gulation and on the offset surface generation technique. In
some situations (e.g., long thin triangles with highly varying
vertex normals) the combination of poor base surface trian-
gulation and offset generation can lead to inverted tetrahe-
dra and an inverted mapping in those tetrahedra. We have
not experienced this problem in any of our experiments, but



(a) (b) (c)

Figure 6: In (a) a sand textured Stanford bunny is shell mapped with a star pattern. Zooming in on the tail in (b) clearly
shows the mapped geometry and portions of its underside. The bunny’s 2D texture map is shown in (c) with the 3D geometry
to be mapped.

a possible solution is to use the determinant to detect tetra-
hedra inversion and reset the normals at the triangle’s ver-
tices with the average of the the vertex normals. Another
possible solution is to mark those regions of texture space as
unusable.

Shell mapping does not supplant displacement mapping or
other texturing techniques, but complements them. Dis-
placement mapping modifies a surface by moving vertices
along associated normals, whereas shell mapping adds 3D
geometric detail to the shell map region without modifica-
tion of the original surface. This enables shell maps to easily
create overhanging geometry, a task not easily accomplished
by displacement mapping techniques.

6 Results

Figure 8 (a) and Figure 8 (b) illustrate a hypertexture func-
tion defining a weave adapted from [Ebert et al. 2003], that
has been mapped to the shell space surrounding a sphere. In
(b), the procedural geometry interacts with itself and with
its surrounding environment, casting shadows on the “Cor-
nell box.” The model was ray traced using photon-mapping
techniques, with full reflection. Figure 8 (c) shows the weave
texture applied to the “Isis” data set.

We demonstrate the robustness of our technique on a bench-
mark data set, the Stanford bunny, in Figure 6. The zoomed
view in part (c) of Figure 6 shows how the mapped geom-
etry closely follows the curvature of the mesh and further
inspection reveals views of portions of the underside of sev-
eral starfish.

The whale’s tail vase, shown in Figure 1, illustrates the shell
mapping method as applied to a sculpted glass model. The
final whale’s-tail model consists of 1.17 million polygons and
was shell mapped in approximately 24 seconds on an 2.5
gigahertz Apple G5 PowerPC with 2 GB of memory.

7 Conclusion

We have presented a powerful and flexible approach to map-
ping geometry and texture as three-dimensional detail on
an object. A shell map is a bijective mapping between

shell space and texture space that can be used to generate
small-scale features on surfaces using a variety of render-
ing and modeling techniques. The method is based upon
offset generation, prism identification, tetrahedral splitting,
and point-in-tetrahedra methods, so that the barycentric co-
ordinates of corresponding tetrahedra implement the map-
ping. We believe that shell maps have utility that extends
well beyond the applications we have presented. The tech-
nique opens up new avenues of research in volumetric texture
generation, geometry textures, and generalized displacement
maps.

Acknowledgments

This work was supported by the National Science Founda-
tion under contracts ACR 9982251 and ACR 0222909, and
by Lawrence Livermore National Laboratory under contract
B523818. We thank the Stanford Graphics Group and Cy-
berware for making benchmark data sets available, Bruno
Levy for the LSCM texture map of the Stanford Bunny,
and to Ken Musgrave for words of encouragement. Special
thanks go out to Janine Bennett, Chris Co, Scott Dillard,
Bao Qi Feng, Oliver Kreylos, Aaron Lefohn, John Owens,
and Peter Shirley for helpful discussions, revisions, and sug-
gestions related to this work, and to Nina Amenta for her
invaluable help during the review and rebuttal process. We
thank Shaun Ramsey for discussion on an early version of
these ideas. Thank you to the anonymous reviewers for their
useful comments and suggestions on how to make this paper
better.

References

Bernd, M., and Plassmann, P. 2000. Mesh Generation.
North Holland, Amsterdam, 291–332.

Blinn, J. F., and Newell, M. E. 1976. Texture and
reflection in computer generated images. ACM Commu-
nications 19, 10, 542–547.

Blinn, J. F. 1978. Simulation of wrinkled surfaces. In
Computer Graphics (SIGGRAPH ’78 Proceedings), ACM
Press, 286–292.



(a) (b) (c)

Figure 8: (a) A procedural texture of a weave applied to two different models. A sphere is shown in (a) with the weave texture.
In (b), the procedural texture is applied to the shell space surrounding a sphere. Note that the reflective strands of the weave
interact with each other, and with their environment. In (c), the weave is applied to an “Isis” model.

(a) (b) (c)

Figure 9: Cylinders mapped onto a starfish model. Note the increase in geometric distortion as the offset height is increased
from (a) one percent, (b) five percent, and (c) 10 percent length of the diagonal of the starfish’s bounding box.

(a) (b) (c)

Figure 10: A simplified model of the Stanford bunny (approximately 7,000 triangles) and a sphere cap are shell mapped onto
a patch. Notice how the mapped geometry in (a) closely follows the curvature of the patch and the distortion, in the form of
stretching, from the 2D texture mapping on the right. A zoomed image of the wireframe model is shown in (b). In (c), the
green base surface pinches back on itself and the resulting blue offset surface is restricted in height in the complement of the
object. The nonuniform height of the offset results in squished cylinders.



Brown, P. J. C., and Faigle, C. T. 1997. A robust effi-
cient algorithm for point location in triangulations. Tech.
rep., Cambridge University, February.

Cabral, B., Cam, N., and Foran, J. 1994. Accelerated
volume rendering and tomographic reconstruction using
texture mapping hardware. In VVS ’94: Proceedings
of the 1994 Symposium on Volume Visualization, ACM
Press, 91–98.

Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., and
Shum, H.-Y. 2004. Shell texture functions. ACM Trans-
actions on Graphics 23, 3 (August), 343–353.

Cohen, J., Varshney, A., Manocha, D., Turk, G., We-
ber, H., Agarwal, P., Brooks, F., and Wright, W.
1996. Simplification envelopes. In Computer Graphics
(SIGGRAPH ’96 Proceedings), ACM Press, New Orleans,
LA, 119–128.

Cook, R. L., Carpenter, L., and Catmull, E. 1987.
The REYES image rendering architecture. In Computer
Graphics (SIGGRAPH ’87 Proceedings), M. C. Stone,
Ed., 95–102.

de Berg, M., van Kreveld, M., Overmars, M., and
Schwarzkopf, O. 2000. Computational Geometry Algo-
rithms and Applications, 2 ed. Springer.

Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin,
K., and Worley, S. 2003. Texturing & Modeling A
Procedural Approach, 3 ed. Morgan Kaufmann Publishers.

Erleben, K., and Dohlmann, H. 2004. The thin shell
tetrahedral mesh. In The 13’th Danish Conference on
Patteren Recognition and Image Processing, S. I. Olsen,
Ed., 94–102.

Farin, G. 1998. Curves and Surfaces for Computer Aided
Geometric Design, 5 ed. Academic Press, Boston.

Guibas, L., and Stolfi, J. 1985. Primitives for the ma-
nipulation of general subdivisions and the computation of
Voronoi. ACM Transactions on Graphics 4, 2, 74–123.

Jensen, H. W. 2001. Realistic Image Synthesis Using Pho-
ton Mapping. AK Peters.

Kajiya, J. T., and Kay, T. L. 1989. Rendering fur with
three dimensional textures. In Computer Graphics (Pro-
ceedings of SIGGRAPH 89), vol. 23, 271–280.

Kirkpatrick, D. G. 1983. Optimal search in planar sub-
divisions. SIAM Journal on Computing 12 , 28–35.

Levoy, M. 1988. Display of surfaces from volume data.
IEEE Comput. Graph. Appl. 8, 3, 29–37.

Meyer, A., and Neyret, F. 1998. Interactive volumetric
textures. In Rendering Techniques ’98, Springer-Verlag
Wien New York, G. Drettakis and N. Max, Eds., Euro-
graphics, 157–168.

Neyret, F. 1998. Modeling, animating, and rendering com-
plex scenes using volumetric textures. IEEE Transactions
on Visualization and Computer Graphics 4, 1, 55–70.

Peng, J., Kristjansson, D., and Zorin, D. 2004. Inter-
active modeling of topologically complex geometric detail.
ACM Transactions on Graphics 23, 3 (August), 635–643.

Peng, J. 2004. Thick Surfaces: Interactive Modeling of
Topologically Complex Geometric Details. PhD thesis,
New York University.

Perlin, K., and Hoffert, E. M. 1989. Hypertexture. In
Computer Graphics (SIGGRAPH ’89 Proceedings), ACM
Press, 253–262.

Sarnak, N., and Tarjan, R. E. 1986. Planar point loca-
tion using persistent search trees. Communications of the
ACM 29 , 669–679.

Smits, B. E., Shirley, P., and Stark, M. M. 2000. Direct
ray tracing of displacement mapped triangles. In Proceed-
ings of the Eurographics Workshop on Rendering Tech-
niques 2000, Springer-Verlag, 307–318.

Wang, X., Tong, X., Lin, S., Hu, S., Guo, B., and
Shum, H.-Y. 2004. Generalized displacement maps. In
Eurographics Symposium on Rendering, H. W. Jensen and
A. Keller, Eds.

Warren, J., Schaefer, S., Hirani, A. N., and Desbrun,
M. 2003. Barycentric coordinates for convex sets. Tech.
rep., Rice University.

Westermann, R., and Ertl, T. 1998. Efficiently using
graphics hardware in volume rendering applications. In
Computer Graphics (SIGGRAPH ’98 Proceedings), ACM
Press, 169–177.

Yezzi, A. J., and Prince, J. L. 2002. A PDE ap-
proach for thickness, correspondence, and gridding of an-
nular tissues. In ECCV ’02: Proceedings of the 7th Euro-
pean Conference on Computer Vision-Part IV, Springer-
Verlag, 575–589.


