
Simplification of Arbitrary Polyhedral Meshes
Shaun D. Ramsey
University of Utah

Salt Lake City, UT, USA
email: ramsey@cs.utah.edu

Martin Bertram
University of Kaiserslautern

Kaiserslautern, Germany
email: bertram@informatik.uni-kl.de

Charles Hansen
University of Utah

Salt Lake City, UT, USA
email: hansen@cs.utah.edu

ABSTRACT: Surface models containing billions of poly-
gons are becoming more frequent in computer graphics.
Mesh simplification is necessary for displaying such sur-
faces at interactive rates. We describe a novel method for
simplifying polyhedral meshes while producing multiple
levels of detail for progressive transmission and interac-
tive exploration. Unlike previous work on mesh simpli-
fication, our method is not restricted to triangle meshes.
We propose a highly efficient edge-collapsing algorithm
for meshes composed of non-planar multi-sided polygons
based on a simple edge-selection strategy.

KEY WORDS: mesh simplification, progressive meshes,
multiresolution, level-of-detail.

1 Introduction

Highly detailed geometric models are frequently used in
computer graphics to convey realism. Surfaces are mostly
represented by polyhedral meshes required for efficient
rendering. Meshes reconstructed from precise CAD mod-
els or from laser-range scanned objects often contain bil-
lions of polygons, making it difficult to display, modify,
and transmit such surfaces interactively. It is desirable to
simplify models allowing for progressive transmission and
real-time rendering. In progressive transmission, a portion
of the model is transmitted and displayed, while more in-
formation about the mesh is transferred and inserted into
the existing model.

Level-of-detail (LOD) techniques [1, 2, 3] are em-
ployed to create multiresolution mesh representations for
interactive rendering. The amount of detail displayed can
be locally adapted to the size of objects on the screen (view-
dependent rendering) and to the performance of graphics
hardware. Rendering times can thus be reduced with little
or no loss in visual accuracy. Geomorphs [4] are used to
avoid popping effects when the resolution is changed.

A technique that has been shown to complete these
tasks is an edge collapse [5] described by these steps:

1. Given a mesh, choose an edge for collapse.

2. Choose a vertex for the collapse.

3. Replace the edge with the chosen vertex.

Figure 1. Collapsing an edge (dashed line on the left). Half-
edge and full-edge collapses are illustrated to the upper and
lower right, respectively.

Triangles incident to the collapsed edge are eliminated.
Multi-sided polygons incident to this edge shrink (by re-
moving one edge and one vertex). In the second step, we
distinguish between half-edge and full-edge collapses. In a
half-edge collapse, the vertex is chosen from the two ver-
tices on the edge. In a full-edge collapse, a new vertex is
created, generally as the average of the two vertices, see
figure 1, affecting more polygons.

Several simplification techniques have been pre-
sented, but none of them deal with arbitrary polyhedral
meshes. Before simplifying a polyhedral mesh, each poly-
gon needs to be triangulated, increasing the number of
polygons. The task is, however, simplifying the mesh.
In the present work, we propose a highly efficient mesh
simplification algorithm for meshes containing multi-sided
polygons. We demonstrate that a simple edge selection cri-
terion based on normals of adjacent polygons provides vi-
sually pleasing results while minimizing computation time.
Our algorithm can be used for view-dependent rendering,
progressive transmission, and multiresolution editing.

In the next section we review related work. In sections
3 and 4, we present the edge-selection and edge-collapse
strategies of our adaptive coarsening algorithm. The in-
verse operation, splitting vertices for adaptive refinement,
is described in section 5. In section 6, we present numerical
examples and conclude our work in section 7.

2 Related Work

Turk [6] replaces the vertices on a surface with new points
with a curvature-based density. In [7, 8], vertices are re-
moved from the surfaces and the resulting holes are re-
triangulated. Rossignac and Borrel [9] place meshes on
a grid and cluster groups of vertices that fall into the same
region. Lindstrom [10] shows that simple error-estimation
produces comparable results to expensive algorithms based
on quadratic error metrics.

Multiresolution representations are often used for ge-
ometry compression. Lee [11] et al. develop a triangle-
quad mesh codec but do not consider arbitrary polygons.
In Isenburg’s polygon coding method [12], positions are
quantized to a coarse level of precision reducing storage
time. Kobbelt [13] et al. construct a wavelet-like multires-
olution analysis considering local operations on irregular
triangle meshes.

Lounsbery [14] and Eck [15] describe a wavelet ap-
proach for simplifying meshes. Since their approach uses
meshes with regular subdivision connectivity, the repre-
sented surfaces need to be re-triangulated. Edge collapses
are widely used [4, 5, 16, 17, 18, 19] due to their smooth
transitions and quality of simplification. As such, we have
chosen to extend this form of simplification to arbitrary
meshes.

Kobbelt [20] used simplification to produce a re-
parameterization of surfaces. A coarse base mesh is sub-
divided regularly and the points of the regular mesh are
projected back onto the coarse surface. Similar approaches
have been used in MAPS [21] and Bertram’s work on iso-
surfaces [22]. Our simplification method can be used for
re-parameterization of surfaces, as well.

Meshes can be constructed by a variety of techniques,
like scanning real-life models, sampling free-form sur-
faces, and extracting isosurfaces. Surface models are thus
defined in a variety of ways, mostly using meshes com-
posed of triangles and multi-sided polygons [4, 23, 24, 25].
Meshes containing pentagons, hexagons and quadrilaterals
are common in many modeling packages [12]. Our algo-
rithm is capable of processing the most general type of
meshes.

3 Edge Selection

The first step in the simplification process is to choose an
edges to be collapsed. Our selection algorithm is based on
the deviation of the normals in the resulting mesh when an
edge is removed. Consider an edge for removal, create a
new mesh with this edge collapsed and then compare nor-
mals in the new and old mesh:���������
	����	���� (1)

Figure 2. A multi-sided polygon is preserved (left) or
shrunk into a triangle (right) by collapsing one of the dotted
edges. Arrows denote half-edge collapses.

If the dot product between the normals of the corresponding
polygons in the two meshes is above a certain threshold,����������� , then allow the collapse. Using a threshold close
to one, say ������� ��� , will eliminate all polygons that are
nearly co-planar.

Polygon normals are simply computed by averaging
the normals of incident vertices. In the case that vertex
normals are not available, we estimate the polygon normal
by averaging the cross products of each pair of adjacent
edges of the polygon:� !" # $&%('*)

+ %-,)
#/.�0

'1)
#32 %-,)

#4.
(2)

using indices modulo where is the number of edges.
For triangles, the normal is computed from a single cross
product. In the case of quadrilaterals, a cross product of the
diagonals provides a sufficient estimate.

Finding the best choice for a single edge collapse in
the entire mesh would be very inefficient. Hence, we sweep
through the mesh and select all independent edges, that can
be collapsed such that the normal deviation remains below
the prescribed threshold � . Two edges are considered to
be independent, if they do not belong to a common poly-
gon. A set of independent edges can easily be determined
by marking the incident polygons of a selected edge and
by processing only edges of polygons that have not been
marked. After each sweep, the selected edges are collapsed
and the entire process can be repeated until a desired reso-
lution is obtained.

To obtain a finer granularity of levels (or to obtain a
larger number of levels), we randomly select a set of inde-
pendent edges that are eligible for collapse. The maximal
number of collapsed edges for each level can be defined
by the user. To obtain uniform levels of resolution, a cer-
tain percentage of all edges is selected for collapse in every
sweep. A greater number of levels allows to adapt more
smoothly to a required resolution.

When simplifying a mesh, the user decides whether
multi-sided polygons should be preserved or simplified as
soon as possible. When this choice has been made, the al-
gorithm selects edges accordingly. This way, the coarser

Figure 3. Comparison of full-edge collapses (top) with
half-edge collapses (bottom) in the venus mesh.

meshes are either composed of multi-sided polygons, or
converted into pure triangle meshes after a few passes, see
figure 2.

Although an edge may pass the normal test, it may
still be ineligible for removal in our algorithm if this would
modify surface topology. For example, we cannot collapse
an edge belonging to a tetrahedron. An edge collapse can
only be performed when the stencil of vertices surround-
ing this edge is non-degenerate (i.e., all these vertices are
different). Special rules apply to boundary edges.

4 Edge Collapse

An edge selected for collapse can be removed in two ways,
choosing either a full-edge collapse or a half-edge collapse,
see figure 1. These two edge collapse techniques differ only
in how they choose the vertex. Half-edge collapses should
be used when original vertices should remain on the sim-
plified mesh. They are preferably used since they affect a
smaller portion of the mesh than full-edge collapses. The
latter minimizes the deviation of the new vertex from the
endpoints. Lower deviation reduces popping artifacts while
transitioning between two levels of resolution.

In both cases, multi-sided polygons may be affected,
depending on the type of edge selection technique used. In
triangle meshes, collapses cause two triangles to be deleted
as shown in figure 1. In our technique an edge that is part

Figure 4. Information used for reconstructing a collapsed
edge. v1 and v2 are vectors storing the locations of the
endpoints before the collapse. nv is the id of the new vertex.
p1 and p2 are the polygons involved in the actual collapse.
p3 and p4 are altered polygons which originally pointed to
v2. p5 and p6 are altered polygons which originally pointed
to v1. Since polygon p2 is deleted in the edge collapse, we
also store the position of vertex dv1.

of a multi-sided polygon may be collapsed to produce a
polygon with fewer vertices, as demonstrated in figure 1.
Figure 3 illustrates an example of these collapses in a real
mesh. The algorithm for full-edge and half-edge collapses
outlined above removes triangles incident with a collapsed
edge and decreases the number of vertices in multi-sided
polygons.

5 Vertex Splits

To allow for progressive transmission, vertex splits are
used. A vertex split simply inverts the process of an edge
collapse. Vertex splits allow for geomorphs that smoothly
transition between meshes at different levels of detail. For
each vertex emanating from an edge collapse, this edge can
be recovered from the information about the mesh stored at
the time of edge collapse. The final result will be a coarse
mesh combined with the necessary information to recreate
the original mesh.

When performing an edge collapse, we record the in-
formation necessary to perform the vertex split. This in-
formation includes the vertices of the collapsed edge and
the vertex identification to which the edge collapsed. It in-
cludes references to deleted triangles, and the id of the third
vertex. Lastly, the record should include a list of polygons
in which there was a vertex change, see figure 4.

If this information is stored in reversed order (last col-
lapsed to first), then the original mesh can be reconstructed
from the coarsest mesh by performing vertex splits. In this
way, the simplified mesh can be transmitted, displayed and
successively updated according to the recorded informa-
tion.

no. edges original 10 50 70 final

tri’s 9331 10273 11412 10790 8930
quad’s 12164 10721 6294 4678 2738

5 27 24 8 5 3
6 1 2
7 6
8 4 3 4
9 3 8
10 2 6 9
11 1 5 9 9
12 64 63 57 46 26

Table 1. This table describes the number of polygons (of
various sizes) at various stages of simplification. In this
case, we used the crocodile mesh due to its interesting face
sizes and �5�6���7�8� .
6 Results

We described a method to simplify arbitrary meshes using
edge collapse techniques. Edge selection depends upon the
deviation of polygon normals after an edge collapse. The
user may also tune the edge selection process according to
a particular mesh or need. An example of extreme mesh
simplification using the dragon data set from Stanford is
shown in figure 5.

When performing an edge collapse, the cosine of the
angle between polygon normals is considered. This poly-
gon normal threshold can be modified to give a desired re-
sult. The original algorithm consisted of a threshold of 0
which satisfies the condition that no polygons may flip nor-
mals in an edge collapse. By raising this threshold level, it
was observed that it is a useful tool to control the simpli-
fication process. A value of 0.99 typically gives desirable
results. A comparison of different thresholds is provided in
figure 6.

In our algorithm, edge selection can be done by view-
ing a subset of possible edges for edge collapse and choos-
ing the edge with the least deviation according to our
heuristics. It is possible to scan the entire mesh for the best
edge collapse, but we have discovered that it is only neces-
sary to view many possible edge collapses if the threshold
is low. As such, for a high threshold, a collapse can occur at
the first valid edge. For low thresholds, searching a higher
number of edges yields a better result. Figure 7 suggests
that the algorithm produces similar results when the edges
to be collapsed are chosen either from a large or from a
small set of candidates.

We also ensure that only independent edges (not shar-
ing a polygon) can be collapsed in one pass. This is simply
implemented by marking the polygons affected by a col-
lapse and by excluding their edges from any further col-
lapse in the same pass. We found that it was interesting

model original simplified time

dragon 871414 48584 42.900
bunny 69451 6958 4.110

crocodile 21590 11695 3.670
venus 4254 711 0.310

Table 2. This table describes the entire time it takes to sim-
plify a mesh. This includes time to read the mesh from
disk and to place it into memory. The original column de-
scribes the number of polygons in the original mesh. The
simplified column describes how far the mesh was simpli-
fied when using a threshold of �9�:���7�8� . All times are in
seconds. In these images, one percent of the original total
edges are searched before an edge for collapse is chosen.
We note that it is even more efficient to collapse multiple
edges in one pass.

to track the number of different types of polygons in our
meshes. The crocodile surface consists of polygons with up
to twelve edges. Table 1 contains a table which describes
how many of each type of polygon were present in the mesh
at different points in the simplification process.

Due to the simple criterion for selecting edges, our
mesh simplification method is highly efficient. When
searching one percentage of the total mesh for a valid edge,
we achieved the times found in table 2. If necessary, our
simplification algorithm can be faster by lowering the per-
cent of the total mesh searched for a valid edge.

7 Conclusions and Future Work

We have developed a simplification method processing
meshes composed of triangles and multi-sided polygons.
We obtain visually pleasing results using a simple edge-
selection criterion based on the deviation of surface nor-
mals estimated from the mesh. Our level-of-detail algo-
rithm can be used for progressive transmission and interac-
tive exploration of large-scale meshes.

We are planning to use our algorithm in selective re-
finement and multiresolution editing applications. Similar
algorithms based on pure triangle meshes have been de-
vised earlier [4, 26, 27]. Future work will be directed at
the preservation of feature lines and the corresponding seg-
mentation and parameterization of surfaces.

Acknowledgments

At this point we would like to acknowledge Stanford 3D
Scanning Repository and Avalon for the meshes used in
this paper. A special thanks to the Utah Graphics Group
for making models available to us.

References

[1] Clark, J. Hierarchical geometric models for visible sur-
face algorithms, In Communications of the ACM 19,
1976, pp. 547–554.

[2] Funkhouser, T. A., and Séquin, C. H. Adaptive display
algorithm for interactive frame rates during visualiza-
tion of complex virtual environments, In Proceedings
of ACM SIGGRAPH 93, 1993, pp. 247–254.

[3] Rosenfeld, A., Ed. Multiresolution Image Processing
and Analysis, Springer, Berlin, 1984.

[4] Hoppe, H. Progressive meshes, In Proceedings of ACM
SIGGRAPH 96, 1996, pp. 99–108.

[5] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J.,
and Stuetzle, W. Mesh optimization, In Proceedings
of ACM SIGGRAPH 93, 1993, pp. 19–26.

[6] Turk, G. Re-tiling polygonal surfaces, In Proceedings
of ACM SIGGRAPH 92, 1992, pp. 55–64.

[7] Schroeder, W. J., Zarge, J. A., and Lorensen, W. E.
Decimation of triangle meshes, In Proceedings of ACM
SIGGRAPH 92, 1992, pp. 65–70.

[8] Cohen, J., Varshney, A., Manocha, D., Turk, G., We-
ber, H., Agarwal, P., Jr., F. P. B., and Wright, W. Sim-
plification envelopes, In Proceedings of ACM SIG-
GRAPH 96, 1996, pp. 119–128.

[9] Rossignac, J., and Borrel, P. Multi-resolution 3D ap-
proximations for rendering complex scenes, Model-
ing in Computer Graphics: Methods and Applications,
1993, pp. 455–465.

[10] Peter Lindstrom and Greg Turk. Evaluation of Memo-
ryless Simplification, IEEE Transactions on Visualiza-
tion and Computer Graphics 5, 2 (April - June), 1999,
pp. 98–115.

[11] Lee, H., Alliez, P., and Desbrun, M. Angle-Analyzer:
A Triangle-Quad Mesh Codec, Proceedings of Euro-
graphics 02, 2002, pp. 383–392.

[12] Isenburg, M., and Alliez, P. Compressing Polygon
Mesh Geometry with Parallelogram Prediction, In
IEEE Visualization 2002, 2002, pp. 141–146.

[13] Kobbelt, L., Campagna, S., Vorsatz, J. and Seidel,
H. Interactive Multi-Resolution Modeling on Arbi-
trary Meshes, In Proceedings of SIGGRAPH 98, 1998,
pp. 105–114.

[14] Lounsbery, M., DeRose, T. D., and Warren, J. Mul-
tiresolution analysis for surfaces of arbitrary topolog-
ical type, ACM Transactions on Graphics 16, 1 (Jan-
uary), 1997, pp. 34–73.

[15] Eck, M., DeRose, T. D., Duchamp, T., Hoppe, H.,
Lounsbery, M., and Stuetzle, W. Multiresolution anal-
ysis of arbitrary meshes, In Proceedings of ACM SIG-
GRAPH 95, 1995, pp. 173–182.

[16] Garland, M., and Heckbert, P. S. Surface simplifi-
cation using quadric error metrics, In Proceedings of
ACM SIGGRAPH 97, 1997, pp. 209–216.

[17] Hoppe, H. View-dependent refinement of progressive
meshes, In Proceedings of ACM SIGGRAPH 97, 1997,
pp. 189–198.

[18] Popović, J., and Hoppe, H. Progressive simplicial
complexes, In Proceedings of ACM SIGGRAPH 97,
1997, pp. 217–224.

[19] Ronfard, R., and Rossignac, J. Full-range approxi-
mation of triangulated polyhedra, In Proceedings of
Eurographics 96, 1996, pp. 67–76.

[20] Kobbelt, L., Vorsatz, J., Labsik, U., Seidel, H. A
Shrink Wrapping Approach to Remeshing Polygonal
Surfaces, In Proceedings of Eurographics ’99, 1999,
pp. 119–129.

[21] Lee, A. Sweldens, W., Schroder, P., Cowsar, L., and
Dobkin, D. MAPS: Multiresolution Adaptive Param-
eterization of Surfaces, In Proceedings of ACM SIG-
GRAPH 98, 1998, pp. 95–104.

[22] Bertram, M., Duchaineau, M., Hamann, B., Joy, Ken-
neth. Bicubic subdivision-surface wavelets for large-
scale isosurface representation and visualization, In
IEEE Visualization 2000, 2000, pp. 389–396.

[23] Trotts, I. J., Hamann, B., Joy, K. I., and Wiley, D. F.
Simplification of tetrahedral meshes, In IEEE Visual-
ization ’98, 1998, pp. 287–296.

[24] Cignoni, P., Costanza, D., Montani, C., Rocchini, C.,
and Scopigno, R. Simplification of tetrahedral meshes
with accurate error evaluation, In IEEE Visualization
2000, 2000, pp. 85–92.

[25] Zhao, P., and Teh, H. C. Rational bicubic simple
quadrilateral mesh surfaces, The Visual Computer 11,
8, 1995, pp. 401–418.

[26] Zorin, D., Schröder, P., and Sweldens, W. Interactive
multiresolution mesh editing, In Proceedings of ACM
SIGGRAPH 97, 1997, pp. 259–268.

[27] Lee, S. Interactive multiresolution editing of arbitrary
meshes, Computer Graphics Forum 18, 3 (September),
1999, pp. 73–82.

Figure 5. Simplification of the Stanford dragon, composed of 871,414 polygons (left) down to 48,124 polygons (right). All
important features at face, tail, and ridges are still visible.

Figure 6. Simplification of the crocodile data set (left, full resolution) down to 5600 polygons using different thresholds�;�:��� �(< (middle) and �;�=� (right). Note that more features are preserved using the greater threshold in the middle image
using the same number of triangles as in the right image.

Figure 7. Simplification of the venus data set (left, full resolution) down to 2000 polygons. Each collapsed edge was selected
as the best fit from 42 edges (middle) and from 425 edges (right). Both strategies provide similar results.

