
Ray Bilinear Patch Intersections

Shaun D. Ramsey

ramsey@cs.utah.edu

Kristin Potter

kpotter@cs.utah.edu

Charles Hansen

hansen@cs.utah.edu

School of Computing, University of Utah

Abstract

Ray tracing and other techniques employ algorithms
which require the intersection between a 3D paramet-
ric ray and an object to be computed. The object to
intersect is typically a sphere, triangle, or polygon but
many surface types are possible. In this work we con-
sider intersections between rays and the simplest para-
metric surface, the bilinear patch. Unlike other sur-
faces, solving the ray-bilinear patch intersection with
simple algebraic manipulations fails. We present a
complete, efficient, robust, and graceful formulation to
solve ray-bilinear patch intersections quickly. Source
code is available online.

1 Introduction

In computer graphics there are many techniques,
such as ray-tracing, which require an intersection be-
tween a 3D parametric ray and an object. Often
spheres, triangles, and polygons (see [1]) are used as the
object although other surface representations are pos-
sible. In this work, we consider intersections between
a ray and a bilinear patch. At first glance the prob-
lem appears rather simple, however a naive approach
reveals singularities. Bilinear patches are a useful prim-
itive that may be used in ray tracing, such as in the
work completed by Smits et al. [2]. We show a more
complete and graceful formulation than previously pre-
sented ([3]). Also, we describe and provide complete
implementation details. Source code is available online
at the website listed at the end of this paper.

In ray tracing, the ray can be mathematically rep-
resented as a parametric line as shown in the following
equation:

~p(t) = ~r + t~q, ∀ t ≥ 0 (1)

Any point ~p along the ray can be expressed by a
specific t value corresponding to the parametric dis-
tance along the direction vector ~q from the ray origin

~r. When t = 0 the returned point is the ray origin.
Likewise, t < 0 corresponds to points that lie on the
line that passes through ~r, but are behind the ray ori-
gin ~r. Thus, points along the ray are valid when t ≥ 0.

Bilinear patches are formed as a combination of four
possibly non-coplanar points (~p00, ~p01, ~p10, ~p11). The
contribution of each point is described as a weighting
of the two parameters (u,v), such that any point p can
be represented by the following equations with domain
(u, v) ∈ [0, 1]2:

~p(u, v) = (1− u)(1− v) ~p00 + (1− u)v ~p01

+ u(1− v) ~p10 + uv ~p11 (2)

= uv(~p11 − ~p10 − ~p01 + ~p00)

+ u(~p10 − ~p00) + v(~p01 − ~p00) + ~p00 (3)

The following variables can be used for substitution:

~a = ~p11 − ~p10 − ~p01 + ~p00

~b = ~p10 − ~p00

~c = ~p01 − ~p00

~d = ~p00

and, the bilinear patch equation becomes:

~p(u, v) = uv~a + u~b + v~c + ~d, (u, v) ∈ [0, 1]
2

(4)

2 Derivations

To find the intersection of the ray and bilinear patch,
the ray is set equal to the bilinear patch:

~r + t~q = uv~a + u~b + v~c + ~d (5)

where, t, u and v are the unknowns.
The first step to solving the intersection is to solve

for t:

t = (uvax + ubx + vcx + dx − rx)/qx

t = (uvay + uby + vcy + dy − ry)/qy

t = (uvaz + ubz + vcz + dz − rz)/qz (6)

The problem now has 3 equations and 3 unknowns.
The unknown t can be eliminated by setting the x and
y equations equal to the z equation and factoring out
u and v.

uv (axqz − azqx) + u (bxqz − bzqx) + (7)

v (cxqz − czqx) + (dx − rx)qz − (dz − rz)qx = 0

uv (ayqz − azqy) + u (byqz − bzqy) + (8)

v (cyqz − czqy) + (dy − ry)qz − (dz − rz)qy = 0

The following variables are used for substitution:

A1 = axqz − azqx

B1 = bxqz − bzqx

C1 = cxqz − czqx

D1 = (dx − rx)qz − (dz − rz)qx

A2 = ayqz − azqy

B2 = byqz − bzqy

C2 = cyqz − czqy

D2 = (dy − ry)qz − (dz − rz)qy

The equations then simplify to two equations and
two unknowns:

uvA1 + uB1 + vC1 + D1 = 0 (9)

uvA2 + uB2 + vC2 + D2 = 0 (10)

Equation 10 is used to solve for u:

u =
(−vC2 −D2)

(vA2 + B2)
(11)

Equation 9 can then be used to eliminate u:

(−vC2−D2

vA2+B2

)vA1 + (−vC2−D2

vA2+B2

)B1 + vC1 + D1 = 0

Obtaining a common denominator and collecting like
terms results in:

v2 (A2C1 −A1C2)

+ v (A2D1 −A1D2 + B2C1 −B1C2)

+ (B2D1 −B1D2) = 0 (12)

Equation 12 is a quadratic equation in canonical
form that we solve as described in [4]. Once v is found,
we solve using equation 11 to find the corresponding
u value of the intersection point. Depending on the
patch and the ray however, the denominator of Equa-
tion 11 may become zero for a valid intersection. We
solve this problem, by setting Equations 7 and 8 equal

Algorithm 3.1: intersect(ray, patch)

vi ← QuadraticSolver(Equation 12)
comment: i is the # of roots from Eqn 12

if i = 0
return (false)

if i = 1
return (SOLVE(ray, patch, v1))

if i = 2

r1 =SOLVE(ray, patch, v1)
r2 =SOLVE(ray, patch, v2)
if r1 = false

return (r2)
else if r2 = false

return (r1)
else

if r1.t < r2.t
return (r1)

else

return (r2)

Algorithm 3.2: SOLVE(ray, patch, v)

if v ∈ [0, 1]

u←COMPUTE U(v)
if u ∈ [0, 1]

Point p← patch(u, v)
t←COMPUTE T(ray, p)
if t ≥ 0

return (u, v, t)
return (false)

before solving for u. This gives a second equation for
u:

u =
v(C1 − C2) + (D1 −D2)

v(A2 −A1) + (B2 −B1)
(13)

With these derivations, we are ready to run the actual
ray bilinear patch intersection algorithm.

3 Algorithm

Given a ray and a bilinear patch, the intersection
point is computed using Algorithm 3.1. The algorithm
first calls the quadratic equation solver which returns
zero, one or two solutions for v depending on the num-
ber of intersection points as shown in Figure 1. For
each solution of v, where v ∈ [0, 1], the correspond-
ing u and t values are computed using Algorithm 3.2.
Because the ray can intersect the bilinear patch multi-
ple times, we must accurately choose the correct inter-

C

B

A

Figure 1. A bilinear patch being intersected by a
variety of rays. A ray may completely miss the
surface (A), intersect the surface only once (B),
or intersect the surface twice (C).

Algorithm 3.3: compute u(v)

a = vA2 + B2

b = v(A2 −A1) + B2 −B1

if (|b| ≥ |a|)

return (v(C1−C2)+D1−D2

b
)

else

return (−vC2−D2

a
)

section point. Our algorithm chooses the intersection
point with the smallest t which is greater than or equal
to zero. This t value corresponds to the first intersec-
tion between the ray and the bilinear patch.

Once the roots of the quadratic equation are deter-
mined, they are passed to Algorithm 3.2, which com-
putes the u and t values.

Due to the numerical instability that may occur
when calculating a u value using Equation 11, a second
derivation of u is formed by Equation 13. Algorithm
3.3 computes the u value by choosing the largest abso-
lute value of the denominators of Equations 11 and 13.
This approach ensures that the computation of u will
be stable. If u /∈ [0, 1], then this is not an intersection
and we do not calculate t for this (u, v) pair.

To calculate the t value, we calculate ~p using Equa-
tion 2. Given ~p, we then use Equation 1 to solve for
t. Note that this approach is the same as using the
equations in Equation 6 to compute t. Because the
formulation of the ray equation forces a division when
solving for t, Algorithm 3.4 uses the direction vector
component with the largest absolute value. Divisions
by zero are again impossible since a direction vector of
all zeroes is invalid.

Algorithm 3.4: compute t(~r, ~q, ~p1)

if (|qx| ≥ |qy| && |qx| ≥ |qz|)
t = (p1x − rx)/qx

else if (|qy | ≥ |qz |)
t = (p1y − ry)/qy

else

t = (p1z − rz)/qz

return (t)

Ray Formulation Intersections Seconds

Ray Equation 790,000,000 754
Two Plane 790,000,000 963

Table 1. Performance comparison between ray
formulation using the ray equation and two-plane
approaches.

4 Discussion

When implemented on a Xeon 2.66 GHz with 1.00
GB of RAM, on average over 1,000,000 intersection
tests were performed per second. These intersections
were also tested visually in the Utah Real Time Ray
Tracer on a variety of bilinear patches.

Another common formulation of ray bilinear patch
intersections represents the ray as the intersection of
two planes (see [3]). This is done in an effort to re-
move the singularities present in our approach. Such
an implementation changes the ray equation and solves
the system in much the same way as presented above.
However, the two-plane approach only moves the sin-
gularities to a different location in the solution and the
performance decreases due to the set-up time of the
two planes. Table 1 compares the performance of the
two approaches.

5 Web Information

Source code and a simple driver program are
available at:
http://www.acm.org/jgt/papers/RamseyPotterHansen04

References

[1] Shirley, Peter and R. Keith Morley, Realistic Ray
Tracing, A K Peters, 2003, pp 29-38.

[2] B. Smits, P. Shirley, M.M. Stark, Direct Ray Trac-
ing of Displacement Mapped Triangles, Rendering
Techniques 2000, pp 307-318.

[3] A.S. Glassner, editor, An Introduction to Ray Trac-
ing, Academic Press, 1997, pp 94-101.

[4] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and
B.P. Flannery, Numerical Recipes in C, Cambridge
University Press, 1988, p 156.

