Exam 2

CSI 201: Computer Science 1

Fall 2016
Professors: Shaun Ramsey and Kyle Wilson

Question	Points	Score
1	18	
2	29	
3	18	
4	15	
Total:	80	

I understand that this exam is closed book and closed note and is to be completed without a calculator, phone, or other computer. I am NOT allowed to use any external resources to complete this exam. All of the work that I am submitting for this exam is mine. I have completed this exam in accordance with the Washington College Honor Code.

Signature: \qquad

Section: 10: 11:30-12:20 11: $1: 30-2: 20$ EXCLUSIONS AND OTHER COMMENTS ARE THIS (LR!

1. Concepts. Answer each question briefly.
(a) 3 points How many elements are in the following array?

AS A

(b) 3 points How are arrays and pointers related?

Array names are pointers.
THERE'S NO RELATED QUESTION FOR OUR EXAM.
(c) 3 points What important $\mathrm{C}++$ rule does this function definition break?

```
int [] makeArrayOfTenZeros() \{ NEVER RETURN A STATIC ARRAY
    int arr [10];
    for (int i = 0; i < 10; ++i)
        \(\operatorname{arr}[i]=0\);
    return arr;
    \}
```

(d) $\begin{aligned} & 3 \text { points } \\ & \text { double } * \text { four_elements }=\text { new double [4]; | What happens when the }\end{aligned}$ out << four_elements[100];
H might segmentation fault

to display ar arbitrary value following rode is run. vector < double> four (4); cont \ll four. at (4);
It crashes due to' In crashes due bounds
(e) 6 points Explain the differences between static and dynamic arrays.

2. Short Coding Questions. Write a line or two of code to answer each question.

Make sure (a) 3 points Show how to call a function called printInstructions. Here is this
tolknow the differences between prototypes, anturs
and calls.
(b) 3 points Write a line of $\mathrm{C}++$ code to print out the value of the first element of $\left.\begin{array}{l}\text { an array called zebras. } \\ \text { cont } \ll \text { zebras }[0] \ll \text { end l', } \\ >\text { cont } \ll \text { zebras. at }\end{array}\right\} \begin{aligned} & \text { this works w/ } \\ & \text { Vectors also but } \\ & \text { it is betler practice } \\ & \text { to use at }\end{aligned}$
output to the console! print Instructions(),
(c) 3 points Show how to free up the memory that is being used by the array arr, which was created like this:

$$
\left.\begin{array}{l}
\text { delete }[] \text { arr., }
\end{array}\right\} \begin{aligned}
& \text { NO EQUIVALENT } \\
& \text { VECTOR VERSIoN } \\
& \text { of THIS }
\end{aligned}
$$

Remember from hand out this means as a parameter
(d) 3 points Write a prototype for a function called print Array that takes as input an array of type double and an integer length of the array. The function will not return anything. Z Vector of doubles version. ${ }^{\text {F }}$ this question:
void print Array (double *, int); $\}$ void print Vector (vector 〈 double>);
N_{0} ser ind Parameter is required tor
vector because vedas vectors because velds "Knout" "hies size.

(f) 4 points Show how to declare a new array of doubles with 10 elements in two ways: (1) as a static array, and (2) as a dynamic array. ${ }^{\circ}$
Static: double $\sigma[10]^{\circ}$ vector:

(g) 5 points Give several lines of code that set every element of an array to -1 . You should assume that the array is called choices and that the length of the array is stored in a variable named N. <works for vectors but the following checks for (int $i=0^{\circ}, i<N j(+i)\{$ array bounds via the at function.

$$
\text { choices }[i]=-1 ;
$$

(h) 5 points Write a for loop to print every even-indexed element of an array to the console. You may assume that array has been declared and initialized elsewhere and is named sodas, and that the size of the array is stored in an int named num_drinks.
For $\left(\right.$ int $i=0 ; i<$ hum- $\left.\operatorname{drin} k s^{\circ}, i=i+2\right) \sum$ for (unsigned $i=0, i<$ sodas.sizel) $\left.; i+=2\right)\{$ cont < sodas [i] <<enol;

Print every even-indexed element of a vector to the consol
3. Code Output. $c^{\text {che }}$ is
(a) 3 points What is the console output of the following code snippet?

Notice that
this does not change q because there is no $(-) \quad 4$ for (int $q=10 ; q>4 ; q-=2$) $\{$ cont $\ll q-1 \ll$ end l; \}
$\left\{\left.\begin{array}{l}q \text { is } 10 \\ 10 \text { is }>4 \\ \text { output } q-2 \\ \text { o a new line } \\ \text { q is } q-2=8 \\ 8 \text { is }>4 \\ \frac{\text { ont put } q-2=6}{} \\ \text { g hew line }\end{array} \right\rvert\,\right.$ 4

Page 4 of 7
(b) 3 points What value does the function call foo $(12,12,12)$ return? double foo(int numb, int numb, int numb) \{ numb--; hum becomes 1)
if (num1 < numb) $\|<12 ? ~ Y E S ~$
numb = numb - 2; numb is 10 return numb - num1; $10-1 \mid$ is -1
\}
(c) 3 points Consider this definition for the function h :
int h int b, int a) \{ parameter. BUT this function names
return b; parameter. BuT the first parameter b.
FUNCTION SIMPLY RETU RNSVALLE
O FTHE FIRST What is the output of these lines of code?
parameter
$a=4 ; \quad$ Like calling
$\mathrm{b}=8 ;$
lout $\ll h(a, b) ;\} h(4,8)$.

Output:

(d) 4 points Suppose that the function f is defined like this: void $f($ int $\operatorname{arr}[]$, int size, int i) \{
if $(i \quad$ size $)$ $\operatorname{arr}[i]=7$;
\}

(e) 5 points What is the console output of the following code?

```
        #include <iostream>
        #include <string>
```

 using namespace std;
 int function1(int a, int b);
 int function2(int a, int b);
 \(\begin{array}{ll}\text { int main() }\{ \\
 int a=2 ; \&\)| SteP |
| :--- |
| $\# \# 1$ |\end{array}

 int \(b=1 ; \quad f \ldots \mid(2,1)\)
 cout << function (a, b) << end l;
 \}

$$
\begin{aligned}
& \text { int function1(int } a, \text { int } b) \\
& a=\text { function 2 }(a, b) \text { i } a=\sqrt{f}, 2(2,1)=5 \\
& a=5
\end{aligned}
$$

$$
a=\text { function 2 }(a, b) ; a=f \ldots 2(2,1)=5 \quad a=5
$$

Step \#フ if $(a>=3)\{5>=3$ return a; (5)
\}
else \{
return a +3 ;
\} \}

Output:

4. 15 points Write a function to compute the evaluation of the algorithm described below. Use good programming practice, and choose proper return types and parameter values.
Also write a main that demonstrates at least one function call of this function.

Algorithm: In math, the length of a vector of numbers is defined as the square root of the sum of the squares of the numbers. For example:

$$
\begin{aligned}
\operatorname{length}([1,4,6,-2]) & =\sqrt{(1)^{2}+(4)^{2}+(6)^{2}+(-2)^{2}} \\
& =\sqrt{1+16+36+4} \\
& =\sqrt{57} \approx 7.55
\end{aligned}
$$

Write a function that computes this vector length for any array of numbers.

Clarification: You may not assume that input arrays always have 4 elements (like in the example). Your function must be general to any length array.
double length (const double * err, canst unsigned SizE) double sum $=0 ; 1 /$ will hold sum of squares if $(\operatorname{arr}==N U L L)$
return 0,
return 0_{2}; $\left.i=0 ; i<S 12 E ;++i\right)\{$
for (unsigned
Sum $+=\operatorname{arr}[i] * \operatorname{arr}[i]^{\circ}$;
return cart $($ sum $)$)
3
AS A VECTOR QUESTION: LEAREDTHIS CONST to avoid a copy use
double length (coast Vector<druble) \&arr) \& call by reference
double sum $=0$;
for lunsigned $i=0, i<\operatorname{arr}$. size $\cap j++i$) $\{$
sum $t=\operatorname{arr} \cdot a t(i) * \operatorname{arrat}(i) j$
\}
return sprit (sum);
$\}$

