
CSI 201 Ramsey

CSI 201
Function Prototypes and Function Calls

1. We’re going to be learning how to write our own functions. This is an immensely pow-
erful tool that helps us in both modularity and code re-usability. Because modularity
often leads to pieces that are easier to test and debug, this will be a big boon once we
completely comprehend them. Let’s start with a a few prototypes.

2. double sqrt(double);

3. The above is the prototype for the sqrt function. It tells us what kind of thing the
sqrt function expects and the kind of thing the sqrt function will return. The first
double in that line above is the return value. It is what sqrt will evaluate to. It tells
us that assigning the result of a sqrt to a string is useless. It must be assigned to a
double. The second double in that expression tells us the kind of thing that sqrt needs
to passed. What we need to give to the sqrt to call it. In this case, we know that we
must give the sqrt a double. In our code, then, we expect to see sqrt calls that involve
doubles going into the function and coming out of the function. We can thus use the
sqrt function in any place where we could use a double. For example if there was the
following code: double d = 3.3 * 4.0; We can multiply 3.3 times any double. That
means, if we needed to, I can multiply 3.3 times a sqrt.

4. It actually helps if we simply get some practice using it. Let’s see if we can find the
result of

√
a ∗ a + b ∗ b where a and b are input by the user. If we can do that, we can

find the length of the hypotenuse of a right triangle with shorter sides of length a and
b! Try it out:

5. There are plenty of other functions. The pow function takes a base and an exponent
and gives the result of doing that mathematics. See if we can find the result of raising
14 to the 3rd power. Output the result. What is the answer?

CSI 201 Worksheet #15 Page 1 of ??



CSI 201 Ramsey

6. The pow function works this way because of its prototype. It looks like the following
bullet:

7. double pow(double, double);

8. In this prototype we know that pow takes in two doubles and gives us a double in
return. The parameter list is comma separated. The base is also always the first
argument to the pow function. Both pow and sqrt are tucked away in the cmath
library. Let’s look at some other interesting use cases for prototypes.

9. When we seed the random number generator, we pass an integer to srand. That has
the following prototype:

10. void srand(unsigned int);

11. This means we can give any unsigned integer to this seed function and it will see
the random number generator. This is great! The void here means that when we
call srand, it doesn’t compute some value and bring it back to us. void is really the
absence of any return type. The function simply doesn’t bring anything back. It does
set some internal state or change “the outside world” in some way. But it doesn’t,
programmatically, give us a value. This means we can’t cout an srand or assign an
srand to a variable or anything like that. But that’s okay with us, because we don’t
need it to have a return value for it to be useful. Let’s look at rand too:

12. int rand();

13. Rand is an interesting function because we don’t have to give it anything to get an
answer. Effectively what we do when we call rand is simply ask it for the next random
integer. Every time we call it, we get the next random integer over and over again.

14. It is quite frequent as a computer scientist to run into code that we have not seen
before. Thus it is critical to be able to read documentation and glean some information
out of it. The function prototype is one such piece of code that can give us hints
about how a function is meant to operate. Does it return something? What name
must I use to call it? What kinds of things does it expect as parameters? These
are critical to understanding how a function operates. Imagine we received a tangent
function that took two parameters. What would that mean? Understanding those
two inputs will help us uncover the purpose of the tangent function (this does exist
in cmath). But even without precisely understanding what the function does, we can
make function calls given the prototype information. For example, if the prototype is:
double xyzzy(double, double, double); we can at least write a proper function
call by knowing that it takes in three doubles and returns a double at the end of its
computation.

CSI 201 Worksheet #15 Page 2 of ??



CSI 201 Ramsey

15. Let’s look at some function calls again in a complete code snippet:

#include <iostream >

#include <cmath >

using namespace std;

int main() {

double ui1 , ui2 , ui3; // these are for user input

cin >> ui1 >> ui2 >> ui3; //read them in

// directly output a result with sqrt:

cout << sqrt(ui1) << endl;

//since sqrt can be used like a double

//I can use it in other arithmetic

cout << 10* sqrt(ui1) << endl;

//I can use the results of arithmetic to pass to

//the sqrt function as well:

cout << sqrt (10* ui1) << endl;

//let’s move on to pow for a few more examples

//pow computes base raised to exponent power

// so for 2 ^ 3 we can write:

cout << pow(2,3) << endl;

//so far we’ve just been outputting results , we

//can store things in variables just as easily

double my_pow = pow(ui1 , ui2);

//my pow now holds whatever ui1 raised to ui2

//might happen to be. Let’s make things

// interesting by using this result in another

//pow function

double my_new_pow = pow(ui3/20.0, my_pow );

//this is perfectly fine and even acceptable.

}

16. So, sqrt and pow are used a ton in that example. But we’ve had code that used plenty
of other functions too. size, at, push back, and resize are all functions with vectors.
Our main is a function!

CSI 201 Worksheet #15 Page 3 of ??


