
CSI 394 Ramsey

CSI 394
Week 3: Wavelets!

1. From last week, we have code to read in a PPM and average side by side elements.

2. Extend our code from last week to also average elements that are on top of one another.
Thus, if our initial image was 256x256, it will now be 128x128. Last week, it went from
256x256 to 128x256.

3. Output our new image to ppm to check it out. This should now look like a smaller
copy or thumbnail of your original image. We can try out our three sampling methods
to see which one is best. One might call this a low-pass filter. This is essentially what
we are implementing. Of course, our filter is really simple. It averages neighboring
pixels.

4. Make sure our code can read in our new 128x128 image and average it into a 64x64
image and output it. This might require some changes in code if we were not writing
things generally in the past.

5. Now, in this new version, let’s keep our averages as floating point values AND keep
around the coefficients after the averages. We’ll store them as a kind of separate image
on the side. Some sample numbers as we go through the process are listed below.

6. Original Image:

255 255 255 255 0 0 0 255 0 0 0 255

255 255 255 255 255 255 255 255 255 255 255 255

255 0 0 0 255 0 0 0 255 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

7. Averaged Width with offsets on the far right:

255 127.5 127.5 0 127.5 127.5 0 127.5 127.5 0 127.5 -127.5

255 255 255 255 255 255 0 0 0 0 0 0

127.5 127.5 0 0 0 127.5 127.5 -127.5 0 0 0 127.5

0 0 0 0 0 0 0 0 0 0 0 0

8. Averaged Height (after Averaged Width):

255 191.25 191.25 127.5 191.25 191.25

... 0 63.75 63.75 0 63.75 -63.75

63.75 63.75 0 0 0 63.75

... 63.75 -63.75 0 0 0 63.75

0 -63.75 -63.75 -127.5 -63.75 -63.75

... 0 63.75 63.75 0 63.75 -63.75

63.75 63.75 0 0 0 63.75

... 63.75 -63.75 0 0 0 63.75

CSI 394 Week 3 Page 1 of 3



CSI 394 Ramsey

9. Provide a mechanism to output this as a special file. Let’s use a magic number on the
first line that is simply RWV1. We’ll later introduce RWV0, RWV2 and more. The 1
is going to refer to the fact that the averaging step happened only once. The second
line is width and height and a third line that is “maxval” just like PPM uses. Then
we’ll just output all the values as averaged and subtracted. Let’s call this file .rwv and
we’ll call them “R WAVES” and “R WAVE N” in conversation.

10. Provide a mechanism that outputs this RWV format to a PPM in the following special
way. For the normal image file, output the values as usual. For the subtraction area,
simply output the absolute value of those numbers times two. (As an alternative, we
could output the subtraction area as 128 plus their values.) Since this is not to be used
for reconstruction, we will use this to get a sense of what this image might look like.

11. But, we would like to take this at least one step further and produce other RWV
formats like RWV2 and RWV3. These will require us to average our rows and columns
“N” times according to the number behind the RWV. The RWV0 should just be a
reproduction of a PPM. Whereas, RWV1 is what is listed in the rest of this handout.
RWV2, however, will take the numbers in #8 and average the new averages to get new
averages and offsets. So it will not be required to operate on all 4 colors in each row and
column, but rather it is only required to operate on the 2 new colors (6 values total) in
the upper left of the RWV1 that was produced. In our 256x256 example, RWV1 has
averages in the 128x128 region and differences throughout the rest. RWV2 then would
average that 128x128 region to produce a 64x64 region and differences throughout the
rest. RWV3 produces an averaged region that is 32x32 and RWV4 produces a 16x16
averaged region. RWV8 is as far as we can push this process for a 256x256 region.

12. Write a program to produce an RWVN from a ppm and vice versa. The N should be
considered user input to the program when going from PPM to RWVN.

13. One last thing! The whole point of this process is allow for some compression of our
images. Write some code that produces an RWVN file with more entries of 0 and yet
produces an original PPM (now with some loss) that appears similar to the original.
Here are some hints to get you started. First, pick a threshold that treats values near
0 as 0. Values that are in the x ¿ width/2 or y ¿ width/2 are providing subtraction
and addition details that are less important than those that might appear elsewhere
in an RWV8. Perhaps decide to “zero” out some of these details more aggressively in
that particular region. A good idea might be to use a 1/2j multiplier based on which
averaging iteration the values occurred in. Discuss your choices and results in your
github!

14. You should have a suite of python programs at this point. They should:

(a) Read in an existing PPM and produce an RWVN which contains all the informa-
tion required to reproduce the PPM without loss. The value of the N can be left
to user input or command line parameters.

(b) Read in an existing RWVN and produce the original PPM without loss.

CSI 394 Week 3 Page 2 of 3



CSI 394 Ramsey

(c) Read in an existing RWVN and produce a viewable version of the RWVN as a
PPM.

(d) Read in an existing RWVN and output a new RWVN with more zeroes (which
introduces some loss).

CSI 394 Week 3 Page 3 of 3


