
Chapter 7

 -execution mode (why? how? where?) (98)
 -privilege and protection
 -software and hardware
 -how-to switch between modes

 -microcode (99)
 -"macro" code may execute many smaller micro instructions
 -may add overhead but faster than CPU

 -branch prediction (112)
 -prevent pipeline stalls
 -may use prediction, do both in parallel, need an "undo"
 -architectures use a scoreboard, determine dependencies and allow
 parallel executions
 -branches are taken 60% of the time
 -as a programmer, improve performance by adjusting branch conditions

Chapter 8
 -high level languages (Java/C) (116)
 -many-to-one compilation
 -hardware independent
 -general purpose
 -application oriented
 -abstractions
 -low level languages
 -one-to-one compilation
 -hardware specific
 -special/specific/system oriented
 (every proc has an assembly language - although most are similar)

 -sample assembly translations
 -if statements
 -if-else statements
 -for loops (loop unrolling and moving a goto via early branch)
 -while loops
 -functions, function calls,
 -functions/calls with arguments in registers (126)

Chapter 17

 -parallelism and pipelining (279)
 -types of parallelism (280)
 -microscopic vs macroscopic

 -symmetric vs asymmetric
 -fine-grain vs coarse-grain
 -explicit vs implicit
 -Flynn Classification (283)
 -SISD (conventional)
 -SIMD (vector/graphics processors)
 -MIMD (SMP vs AMP)
 -Challenges to performance (289)
 -communication, coordination, and contention
 -bottlenecks in memory, I/O, OS, and resources
 -memory hierarchy and caching problems (leads to locking)
 -most processes are limited by I/O not CPU
 -speedup - T1 / TN (time on one proc over time on N procs)
 -speedup as a function of number of procs, ideal vs real
 -large # of procs not great for general computing
 -programmer issues (294)
 -must prevent caching issues through locks
 -explicit parallelism often requires complex code
 -symmetric parallelism is easier
 -1 instruction set
 -can pass a job to any processor with no consideration
 -globals are still cumbersome compared to conventional hardware
 -redundant parallelism (295)
 -distributed computing, clusters (295)

