
(Stream Editor)

By:
 Ross Mills

  Sed is an acronym for stream editor
  Instead of altering the original file, sed is

used to scan the input file line by line and
applies instructions in a script to the file

  There are three options to use for sed:
-n, -f and –e.

  The –n flag keeps the computer from
automatically outputting the result. This lets
the user control what is being printed  

  -f indicates that there is a script file to be
used  

  -e is the default option of Sed. It means that
the script is on the command line and not in
a specific file. However, you are not required
to write –e when using Sed.

  If the script fits in a couple of lines, then it’s
instructions can just be included in the
command line, but it must be enclosed in
single quotes:  

 sed –e ‘address command’ input_file  

  For scripts that are longer or may be
repeated, a text file containing the script
should be used, often times named .sed to
specify:  

 sed –f script.sed input_file

  Each line in the input file has a line number given
to it by sed  

  For every line in the file, sed copies an input line
to pattern space, which is a buffer that holds one
or more text lines for processing.  

  Then sed applies the instructions given in the
script to all of the lines in the pattern space that
match the specified addresses in the instruction.  

  After applying the instructions, sed then copies
the pattern space to the output file(unless –n was
used).

  There are four types of addresses in sed:
◦  single line
◦  set of lines
◦  range of lines
◦  nested addresses

  Single line addresses only specify one line,
using either a number or ‘$’ which means the
last line of the file
◦  Example:
  sed 5d poem.txt 

 This example would look in poem.txt and delete
the line numbered 5

  Don’t necessarily have to be consecutive lines
  Use regular expressions written in between

two slashes to specify
  Regular expression may match multiple lines
  Even a line that matches might not see an

instruction that will effect the line
◦  Example: sed ‘/name/Name/NAME/d’ test.txt

 Deletes any line that contains “name”, “Name” or “NAME”

  Defines a set of consecutive lines
  Format is start-address,end-address
  Can be a line number or a regular expression:

 Line-num,/regexp/
  Special case: range of 1,$ which is the first to

the last line
◦  Example: sed –n ‘1,1000d’ poem.txt

 Deletes lines 1 to 1000 in poem.txt

  An address contained inside another address
  The outer address must be set of lines or an

address range
  The inner address may be single line, set of

lines or an address range.
  Example: 1,10 {  

 /begin/,/end/d  
 }

  Sed has many different commands that may
be used but they are grouped into the
following categories:
◦  Line Number Command
◦  Modify Commands
◦  Substitute Commands
◦  Transform
◦  Input/output commands
◦  File Commands
◦  Branch Commands
◦  Hold Space Commands
◦  Quit Command

  The line number command is called by using
‘=‘

  This will print the current line number
  Example: sed –n ‘/name/=’ name.txt
◦  Looks in the file name.txt to find any line where the

word ‘name’ occurs and then it will print that line to
the screen.

  Insert (i), which inserts a line above every
location where the regular expression is found.
◦  Sed ‘/name/i\name2’ test.txt : Creates a new line that

says ‘name2’ above any line where ‘name’ is found  

  Append (a), does the same as insert except it
adds a line below the found regular expression 

  Change (c), replaces the selected lines of text
◦  Sed ‘/name/c\/name2/’ test.txt : Replaces all lines that

contain ‘name’ with the line, ‘name2’  

  Delete (d), deletes the line selected
◦  Sed ‘1d’ test.txt : Deletes the first line in the file

  Changes all occurrences of the regular
expression to whatever is specified.
◦  For example take the text:

 My name is Ross Mills
 My first name is Ross

If we run : sed ‘s/Ross/John/’ text, the output will be:
 My name is John Mills
 My first name is John

  The transform command (y) is used for
transforming text. Often times it is used to
turn letters from lower to uppercase.
◦  Example:

My name is Ross Mills
My first name is Ross

sed ‘y/abcdef/ABCDEF/’ text would output the following:

My nAmE is Ross Mills
My First nAmE is Ross

  Next (n), reads the next input line and starts processing
the new line with the command rather than the first
command
◦  Sed ‘/Line1/{n; s/Line1/Line2/}’ test.txt : If the word Line1 is

found, all occurrences of Line1 in the next line are changed to
line2  

  Append Next (N), appends the next line to pattern space
so the previous command would change Line1 to Line2 on
the first line that it was found  

  Print (p) and Print first line (P), prints the contents of the
pattern space or the first line of the pattern space  

  List Command (l), prints the characters that are not usually
printed such as $ after each line.

  Read file command (r), reads lines from a file and if an
expression is found, it is added to the file.
◦  Example: Line.txt contains the word line and

 test.txt is:  
 My name is Ross Mills 
 My first name is Ross
  Sed ‘/Ross/r line.txt’ test.txt would output the following:

 My name is Ross Mills 
 line  
 My first name is Ross
 Line  

  Write file command (w), writes lines out to a file
◦  Example using the same test.txt :  

 sed ‘/Mills/ w test2.txt’ test.txt : Creates a new file called
test2.txt which contains the lines where “Mills” was found so
test2.txt reads:

 My name is Ross Mills

  Branch (b), takes sed to the label which is
specified using ‘:label_name’

  Branch on substitution (t), only takes the
branch if the regular expression was found
and substituted.

  Hold and Destroy (h) copies the contents of the
pattern space to the hold space  

  Hold and Append (H) adds the contents of the pattern
space to the hold space  

  Get and Destroy (g), gets what is in the holding space
and overwrites it to the pattern space  

  Get and Append (G), gets what is in the holding space
and adds it to the pattern space  

  Exchange (x), switches the content in the holding
space to the pattern space

  Quit (q), prints the content of the pattern
space and then exits or quits sed
◦  Example: sed ‘2q’ test.txt will print the first two

lines of test.txt and then quits the program.

  Sed can allow the user to apply actual text
transformations to a file

  Sed may be used instead of Grep, however
Grep is much more efficient when you are not
trying to alter text

  Sed could be used for many things as seen
with the numerous commands available

