
(Stream Editor)

By:
 Ross Mills

  Sed is an acronym for stream editor
  Instead of altering the original file, sed is

used to scan the input file line by line and
applies instructions in a script to the file

  There are three options to use for sed:
-n, -f and –e.

  The –n flag keeps the computer from
automatically outputting the result. This lets
the user control what is being printed  

  -f indicates that there is a script file to be
used  

  -e is the default option of Sed. It means that
the script is on the command line and not in
a specific file. However, you are not required
to write –e when using Sed.

  If the script fits in a couple of lines, then it’s
instructions can just be included in the
command line, but it must be enclosed in
single quotes:  

 sed –e ‘address command’ input_file  

  For scripts that are longer or may be
repeated, a text file containing the script
should be used, often times named .sed to
specify:  

 sed –f script.sed input_file

  Each line in the input file has a line number given
to it by sed  

  For every line in the file, sed copies an input line
to pattern space, which is a buffer that holds one
or more text lines for processing.  

  Then sed applies the instructions given in the
script to all of the lines in the pattern space that
match the specified addresses in the instruction.  

  After applying the instructions, sed then copies
the pattern space to the output file(unless –n was
used).

  There are four types of addresses in sed:
◦  single line
◦  set of lines
◦  range of lines
◦  nested addresses

  Single line addresses only specify one line,
using either a number or ‘$’ which means the
last line of the file
◦  Example:
  sed 5d poem.txt 

  This example would look in poem.txt and delete
the line numbered 5

  Don’t necessarily have to be consecutive lines
  Use regular expressions written in between

two slashes to specify
  Regular expression may match multiple lines
  Even a line that matches might not see an

instruction that will effect the line
◦  Example: sed ‘/name/Name/NAME/d’ test.txt

 Deletes any line that contains “name”, “Name” or “NAME”

  Defines a set of consecutive lines
  Format is start-address,end-address
  Can be a line number or a regular expression:

 Line-num,/regexp/
  Special case: range of 1,$ which is the first to

the last line
◦  Example: sed –n ‘1,1000d’ poem.txt

 Deletes lines 1 to 1000 in poem.txt

  An address contained inside another address
  The outer address must be set of lines or an

address range
  The inner address may be single line, set of

lines or an address range.
  Example: 1,10 {  

 /begin/,/end/d  
 }

  Sed has many different commands that may
be used but they are grouped into the
following categories:
◦  Line Number Command
◦  Modify Commands
◦  Substitute Commands
◦  Transform
◦  Input/output commands
◦  File Commands
◦  Branch Commands
◦  Hold Space Commands
◦  Quit Command

  The line number command is called by using
‘=‘

  This will print the current line number
  Example: sed –n ‘/name/=’ name.txt
◦  Looks in the file name.txt to find any line where the

word ‘name’ occurs and then it will print that line to
the screen.

  Insert (i), which inserts a line above every
location where the regular expression is found.
◦  Sed ‘/name/i\name2’ test.txt : Creates a new line that

says ‘name2’ above any line where ‘name’ is found  

  Append (a), does the same as insert except it
adds a line below the found regular expression 

  Change (c), replaces the selected lines of text
◦  Sed ‘/name/c\/name2/’ test.txt : Replaces all lines that

contain ‘name’ with the line, ‘name2’  

  Delete (d), deletes the line selected
◦  Sed ‘1d’ test.txt : Deletes the first line in the file

  Changes all occurrences of the regular
expression to whatever is specified.
◦  For example take the text:

 My name is Ross Mills
 My first name is Ross

If we run : sed ‘s/Ross/John/’ text, the output will be:
 My name is John Mills
 My first name is John

  The transform command (y) is used for
transforming text. Often times it is used to
turn letters from lower to uppercase.
◦  Example:

My name is Ross Mills
My first name is Ross

sed ‘y/abcdef/ABCDEF/’ text would output the following:

My nAmE is Ross Mills
My First nAmE is Ross

  Next (n), reads the next input line and starts processing
the new line with the command rather than the first
command
◦  Sed ‘/Line1/{n; s/Line1/Line2/}’ test.txt : If the word Line1 is

found, all occurrences of Line1 in the next line are changed to
line2  

  Append Next (N), appends the next line to pattern space
so the previous command would change Line1 to Line2 on
the first line that it was found  

  Print (p) and Print first line (P), prints the contents of the
pattern space or the first line of the pattern space  

  List Command (l), prints the characters that are not usually
printed such as $ after each line.

  Read file command (r), reads lines from a file and if an
expression is found, it is added to the file.
◦  Example: Line.txt contains the word line and

 test.txt is:  
 My name is Ross Mills 
 My first name is Ross
  Sed ‘/Ross/r line.txt’ test.txt would output the following:

 My name is Ross Mills 
 line  
 My first name is Ross
 Line  

  Write file command (w), writes lines out to a file
◦  Example using the same test.txt :  

 sed ‘/Mills/ w test2.txt’ test.txt : Creates a new file called
test2.txt which contains the lines where “Mills” was found so
test2.txt reads:

 My name is Ross Mills

  Branch (b), takes sed to the label which is
specified using ‘:label_name’

  Branch on substitution (t), only takes the
branch if the regular expression was found
and substituted.

  Hold and Destroy (h) copies the contents of the
pattern space to the hold space  

  Hold and Append (H) adds the contents of the pattern
space to the hold space  

  Get and Destroy (g), gets what is in the holding space
and overwrites it to the pattern space  

  Get and Append (G), gets what is in the holding space
and adds it to the pattern space  

  Exchange (x), switches the content in the holding
space to the pattern space

  Quit (q), prints the content of the pattern
space and then exits or quits sed
◦  Example: sed ‘2q’ test.txt will print the first two

lines of test.txt and then quits the program.

  Sed can allow the user to apply actual text
transformations to a file

  Sed may be used instead of Grep, however
Grep is much more efficient when you are not
trying to alter text

  Sed could be used for many things as seen
with the numerous commands available

