SED

(Stream Editor)

By:
Ross Mills




What is SED?

» Sed is an acronym for stream editor

» Instead of altering the original file, sed is
used to scan the input file line by line and
applies instructions in a script to the file

» There are three options to use for sed:
-n, -f and -e.




The Three SED Options

» The -n flag keeps the computer from
automatically outputting the result. This lets
the user control what is being printed

» —f indicates that there is a script file to be
used

» —e is the default option of Sed. It means that
the script is on the command line and not in
a specific file. However, you are not required
to write -e when using Sed.




Script Formats

» If the script fits in a couple of lines, then it’s
instructions can just be included in the
command line, but it must be enclosed in
single quotes:

sed -e ‘address command’ input_file

» For scripts that are longer or may be
repeated, a text file containing the script
should be used, often times named .sed to
specify:

sed -f script.sed input_file




Operation

» Each line in the input file has a line number given
to it by sed

» For every line in the file, sed copies an input line
to pattern space, which is a buffer that holds one
or more text lines for processing.

» Then sed applies the instructions given in the
script to all of the lines in the pattern space that
match the specified addresses in the instruction.

» After applying the instructions, sed then copies
thec|lo)attern space to the output file(unless -n was
used).




Addresses

» There are four types of addresses in sed:
> single line
- set of lines
> range of lines
- nested addresses




Single Line

» Single line addresses only specify one line,
using either a number or ‘$’ which means the
last line of the file

- Example:

- sed 5d poem.txt
- This example would look in poem.txt and delete
the line numbered 5




Set of Lines

» Don’t necessarily have to be consecutive lines

» Use regular expressions written in between
two slashes to specify

» Regular expression may match multiple lines

» Even a line that matches might not see an
instruction that will effect the line

- Example: sed ‘/name/Name/NAME/d’ test.txt
- Deletes any line that contains “name”, “Name” or “NAME”




Range of Addresses

» Defines a set of consecutive lines

» Format is start-address,end-address

» Can be a line number or a regular expression:
Line-num, /regexp/

» Special case: range of 1,$ which is the first to
the last line

- Example: sed -n ‘1,1000d’ poem.txt
- Deletes lines 1 to 1000 in poem.txt




Nested Addresses

» An address contained inside another address

» The outer address must be set of lines or an
address range
» The inner address may be single line, set of
lines or an address range.
» Example: 1,10 {
/begin/,/end/d

}




Commands

» Sed has many different commands that may
be used but they are grouped into the
following categories:
> Line Number Command
- Modify Commands
> Substitute Commands

Transform

Input/output commands

File Commands

Branch Commands

Hold Space Commands

Quit Command

(0]

o

o

(0]

o

o




Line Number Command

» The line number command is called by using

» This will print the current line number

» Example: sed -n ‘/name/=" name.txt

- Looks in the file name.txt to find any line where the
word ‘nhame’ occurs and then it will print that line to
the screen.




Modify Commands

» Insert (i), which inserts a line above every
location where the regular expression is found.

- Sed ‘/name/i\name2’ test.txt : Creates a new line that
says ‘name?2’ above any line where ‘name’ is found

» Append (a), does the same as insert except it
adds a line below the found regular expression

» Change (c), replaces the selected lines of text

> Sed ‘/name/c\/name?2/’ test.txt : Replaces all lines that
contain ‘name’ with the line, ‘name?2’

» Delete (d), deletes the line selected
o Sed ‘1d’ test.txt : Deletes the first line in the file




Substitute Commands

» Changes all occurrences of the regular
expression to whatever is specified.
> For example take the text:
My name is Ross Mills
My first name is Ross

If we run : sed ‘s/Ross/John/’ text, the output will be:
My name is John Mills
My first name is John




Transform

» The transform command (y) is used for
transforming text. Often times it is used to

turn letters from lower to uppercase.

- Example:
My name is Ross Mills
My first name is Ross

sed ‘y/abcdef/ABCDEF/’ text would output the following:

My nAmeE is Ross Mills
My First nAmE is Ross




Input/Output Commands

» Next (n), reads the next input line and starts processing
the new line with the command rather than the first
command

- Sed ‘/Linel/{n; s/Linel/Line2/} test.txt : If the word Linel is

}‘_ougd, all occurrences of Linel in the next line are changed to
ine

» Append Next (N), appends the next line to pattern space
so the previous command would change Linel to Line2 on
the first line that it was found

» Print (p) and Print first line (P), prints the contents of the
pattern space or the first line of the pattern space

» List Command (l), prints the characters that are not usually
printed such as $ after each line.




File Commands

» Read file command (r), reads lines from a file and if an
expression is found, it is added to the file.
- Example: Line.txt contains the word line and

test.txt is:

My name is Ross Mills

My first name is Ross

- Sed ‘/Ross/r line.txt’ test.txt would output the following:

My name is Ross Mills
line
My first name is Ross
Line

» Write file command (w), writes lines out to a file
0 Examc‘ole using the same test.txt :
sed ‘/Mills/ w test2.txt’ test.txt : Creates a new file called
test2.txt which contains the lines where “Mills” was found so
test2.txt reads:
My name is Ross Mills




Branch Commands

» Branch (b), takes sed to the label which is
specified using ‘:label_name’
» Branch on substitution (t), only takes the

branch if the regular expression was found
and substituted.




Hold Space Commands

>

Hold and Destroy (h) copies the contents of the
pattern space to the hold space

Hold and Append (H) adds the contents of the pattern
space to the hold space

Get and Destroy (g), gets what is in the holding space
and overwrites it to the pattern space

Get and Append (G), gets what is in the holding space
and adds it to the pattern space

Exchange (x), switches the content in the holding
space to the pattern space




Quit Command

» Quit (qg), prints the content of the pattern
space and then exits or quits sed

- Example: sed ‘29’ test.txt will print the first two
lines of test.txt and then quits the program.




Why Use Sed?

» Sed can allow the user to apply actual text
transformations to a file

» Sed may be used instead of Grep, however
Grep is much more efficient when you are not
trying to alter text

» Sed could be used for many things as seen
with the numerous commands available




