
Named from its authors: Alfred V. Aho,
Peter J. Weinberger, and Brian W.
Kernighan

Def: A powerful programming language
disguised as a utility

Joshua Kahan-CSI 294

•  awk reads the input file line by line and performs actions
–  Prints only when specified

•  awk has two UNIX options
–  “-F” option: specifies the input field separator (more rare)
–  “-f” option: names the script file
–  If script is on command line, placed in single quotes
–  if there is no input file, the input comes from the keyboard which is

designated by “-”
•  Execution- awk requires one or more instruction

–  On the command line
•  Ex: awk ‘pattern {action}’ input_file

–  awk script
•  Scripts are suffixed with .awk
•  Executed using ‘-f’
•  Ex: awk –f scriptFile.awk input_file

Fields and Records
•  Files are a collection of fields and records
•  Fields- a units of data that have informational

content
–  Ex: “ls” outputs fields ranging from the permissions to the

filename
–  Fields are each separated by white space

•  Record- a collection of fields treated as a unit
–  All data is related

•  Files containing records are called data files,
“fileName.dat”

•  awk uses data files as input, but text files can be
used
–  Lines of the text become records, just of varying numbers of

fields

Buffers and Variables:
•  Buffer- area of memory which holds data

while processing occurs
–  Field buffers: represented by $1,$2,…,$n where n

is the number of fields in input file
–  Record buffer: there is only one, $0

•  The concatenation of all the field buffers separated by a
field separater

•  Variables- system and user-defined
–  12 system variables: 4 controlled by awk, 8 have

defaults be can be changed
•  FS, RS, OFS, ORS, NF, NR, FNR are the most common

–  User-defined: not declared, come into existence
first time referenced

Script
•  awk scripts are the instructions containing three parts

–  Begin: designated by ‘BEGIN’, followed by instructions enclosed in a
set of braces

•  Initialize variables, create report headings, and other processing
necessary before file processing

–  Body: a loop that processes the records of a file one at a time
•  The loop is contained in one or more set of braces

–  End: designated by ‘END’, occurs after all input data has been read
•  Accumulated information can be analyzed and printed

Example script file:

Patterns
•  Identifies which records receive actions- if pattern returns true

(matches) action takes place
•  Statement w/o a pattern is always true
•  Simple Patterns-

–  Begin and End (already covered)
–  Expressions- 4 types

•  Regular- those covered in chapter 9 and 10
•  Arithmetic- match when nonzero (-, +, ++, =, etc.)
•  Relational- can be string or algebraic compares (<, >, ==, etc)
•  Logical- operators to combine two or more expressions (&&, ||, !)

•  Range Patterns-
–  Associate with a range of records, there are two simple patterns
–  Starts with first record to match the first pattern and ends with next

record to match the second pattern
–  Ex. awk ‘NR == 8, NR == 13 {print NR, $0)’ TheRaven

Actions
•  Instructions or statements, they act when pattern is true
•  One-to-one relationship between action and pattern
•  Action must be in braces
•  Block- set of braces containing pattern and action

–  Considered one statement
–  Nested block- a block inside a block

•  Statements of an action must be separated with: new line,
semicolon or set of braces

•  5 different types of statements
–  Expressions- ex. {total += ($3 + 9)}
–  Output- 3 types: print, printf, and sprintf

•  Print- writes specified to standard output file, must be separated with
commas, when nothing specified entire record is printed

•  Printf- a formatting print with a format string
•  Sprintf- a formatted print that combines two or more fields into a string

–  Decision- a typical if-else statement
–  Loop- typical loops: while, for, and do-while
–  Control- there are 3: next, get a line, and exit

Print and Control
•  Print: ex. {print $1, $2, $3}
•  Control

–  ‘next’: terminates processing of current record and pushes to the
next

–  ‘getline’: a function used as a statement
•  Unlike next it continues executing on the next record instead of

terminating
•  Input directed to $0 or another variable
•  Returns 1 (success), 0 (end of file), or -1 (read error)
•  Uses redirection operator (<) to get input from another file

–  ‘exit’: send to the end statement, used for error conditions
•  Example:

Associative Arrays
•  Like any other array, but the indexes are represented by strings
•  The index is some how associated w/ the element (hence the

name)
•  There is no ordering imposed
•  The index cannot be sorted
•  Processing:

–  For…in loop: for(index_variable in array_name
–  Creating: ex. name[$3]
–  ‘delete’: deletes an element from the array

•  Delete array_name[index]
–  Since indexes are not sorted, so printing associative arrays occurs

in no particular order
•  Example: awk –f salesDeptLoop.awk sales1.dat

String Functions
•  awk has a vast number of string functions
•  ‘length(string)’: returns number of characters including

whitespace
•  ‘index(string, substring)’: returns the first position of substring

in string
–  index(joshua,ua) returns 5

•  Substring- 2 formats
–  ‘substr(string, position)’- returns the substring starting at the

desired position
–  ‘substr(string, position, length)’- returns substring at the position

with the designated length
•  Spit- 2 formats

–  ‘split(string, array)’- splits the fields of a string by the FS and
places them into the designated array (numbered indexes)

–  ‘split(string, array, field_separator)’- designates the field separator

String Functions
•  Substitution

–  ‘sub(regexp, replacement_string, in_string)’-
returns true if successful

–  ‘gsub’- same format, but a global substitution
•  ‘match(string, regexp)’- returns true if

successful
–  Creates RSTART (position of match) and

RLENGTH (length of match)
•  ‘toupper’ and ‘tolower’- string parameters and

turns lower case to upper and vice versa

Mathematical Functions

•  int- truncates floating-point
•  rand()- returns next random number
•  srand(seed)- seeds random number

series
•  cos(x), exp(x), log(x), sin(x), sqrt(x)
•  Atang2(y,x)- returns arc tangent y/x in

range of –pi to pi

User-Defined Functions
•  Format

 function name(parameters)
 {
 code
 }

•  No space between name and parameters in
function call or definition

•  No semicolon need
•  No declaring, like all awk

System Commands

•  Pipes- can give the date, inside a loop
can output users on the system
– awk –f date.awk

•  ‘system(string)’- checks if the command
in the string is successful
–  Returns 0 if successful and 1 if not

Application

•  awk has a vast number of applications
•  Two examples-

–  Count words and line of a file
• awk –f wordCount.awk sonnet.dat

–  Return just phone numbers
• awk –f phones.awk phones.dat

Sed and Grep

•  awk has limitations when it comes to
sed, but can perform most of the same
actions

•  awk can take the place of grep, but it is
much slower and less efficient

