David Rosenberg

I) System Components

A) layered system of modules

B) Three main protected modules

1) HAL

a) Hardware Abstraction Layer

b) a virtual machine to configure all devices and hardware to use one kernel and one set of device drivers

2) kernel

a) operates by using a set of kernel objects whose attributes store kernel data and whose methods perform kernel activities

b) kernel dispatcher – the object type of all kernel calls

i) remain in memory

ii) never pre-empted

iii) Software Interrupts

c) four main responsibilities

i) thread scheduling

· 2 classes variable and real time

1. variable – contains threads with priorities from 0 to 15

2. real time – contains threads with priorities from 16 to 31

ii) interrupt and exception handling

· trap handlers – deal with simple exceptions

· exception dispatcher – creates an exception record containing the reason for the exception and finds an exception handler to deal with it

1. in kernel mode – if no handler is found a fatal system error occurs

2. in software mode

1. attempts to deal at an immediate level

2. attempts to deal at a debugger level

3. attempts to deal at the environmental level

4. if nothing found at any of above levels, terminates process

iii) low-level processor synchronization

iv) recovery after power failure

3) executive

a) provides base for all Environmental Subsystems

b) Object manager

i) a set of handles of objects for user or kernel mode subsystems to tie into in a many to one relation

· dispatcher objects

· file objects

· port objects

ii) maintains the Windows XP internal name space

iii) supervises allocation, definitions, and implementation

iv) only place that generates object handles – also acts as security at this point

c) Virtual memory manager

i) manages virtual address space, physical memory allocation and paging

ii) page based management scheme

· page size = 4kb on 32 bit processors

· page size = 8kb on 64 bit processors

iii) uses a 2 step process to allocate user memory

· reserves a portion of the memory space

· commits the portion by assigning virtual memory space

iv) page directory and page tables – referenced by hardware via physical address

v) physical pages have 6 states

· valid, free, zeroed, modified, standby, bad, and transition

vi) keeps track of all pages of physical memory in a page-frame database

d) Process manager – provides services for creating, deleting, and using processes, threads and jobs

e) Local Procedure Call manager

i) a virtual client server model which allows multiple processes to call 'server' based procedures

ii) is a message passing mechanism between local 'servers' and clients

iii) creates a pair of channels for direct communication

f) I/O manager

i) responsible for file systems, device drivers, and network drivers

ii) stack drivers system

· uses a stack of drivers to modify I/O signals to be understandable by both system and peripheral

· uses drivers written to Windows Driver Model (WDM) specification

iii) miniport driver system

· each type of peripheral has a larger class of driver

· each individual driver adds a miniport driver to add specific functionality

g) Cache manager

i) cache is divided into 256 KB blocks

ii) each cache block is described by a virtual address control block

iii) keeps a small history of read requests to help predict future requests

h) Security Reference Monitor – checks and edits processes object handle rights

i) Plug and Play and Power managers

i) Plug and Play manager – automatically recognizes installed devices and detects changes as the system operates to adapt to changes in the hardware configuration

ii) power management – lowers power use on home computers and minimizes battery drain on laptops

j) Registry – uses a multiple database system to keep track of preferences

k) Booting

C) user mode subsystems

1) environmental subsystems

a) emulate different operating systems

i) OS/2

ii) Win16

iii) Win32

iv) MS-DOS

v) POSIX

2) protection subsystems

a) provide security functions

II) Programmer Interface

A) Access to Kernel Objects – done by CreateXXX() (where XXX is an object name) and terminated by the CloseHandle() function

B) Sharing Objects Between Processes -

1) inherited

2) passing the Kernel Object a second name (may cause overlapping object names)

3) DuplicateHandle() function – uses some other method of interprocess message passing to share Kernel Object handles

C) Process Management

1) Instance Handles – virtual address where every dynamic link library or executable file loaded into a process

2) Scheduling Rule – distinguishes between the foreground program and all background programs changing the time quant for the foreground program to be longer then that of background programs

3) Thread Priorities – determined by it's class (idle, normal, high, realtime) and can be adjusted more so by use of the SetThreadPriority() function

4) Thread Synchronization – ensures that if multiple threads attempt to enter the critical section of some specified code only one section will be permitted to proceed while the others wait

5) Fibers

a) user-mode code that is scheduled according to user-defined scheduling algorithms

b) only one fiber may execute concurrently, even in a multiprocessor environment

6) Thread Pool – provides user-mode programs with three services in an attempt to increase performance

a) a thread queue

b) an API (Application binary interface) that can bind callbacks and waitable handles

c) and APIs to bind callbacks and timeouts

D) Interprocess Communication – handled in many ways

1) sharing kernel objects

2) message passing – particularly popular for GUI applications

a) posting a message – asynchronous

b) sending a message – synchronious

c) can send data as well as a message

3) also works for passing information between threads

E) Memory Management

1) Virtual Memory

a) processes reserve or commit virtual memory

b) a process may lock some committed pages into physical memory so as to not be removed – maxes at 30 unless specifically changed

2) Memory Mapping Files – used for multiple processes to use the same memory without duplicating it into multiple memory spaces

3) Heaps

a) reserved address space for Win32 API processes

b) synchronized to prevent the heap's space-allocation data structures from being damaged by concurrent updates by multiple threads

4) Thread Local Storage – allocates global storage on a per-thread basis (creating a 'local' global storage for each thread)

