
MAT 494 – Computer Graphics

Review Sheet #2

• Lighting

1. Here, ~v is the unit vector pointing from the spotlight to the vertex. ~d is
GL SPOT DIRECTION. ~n is the unit normal vector at a particular vertex.
~L is the unit vector that points from the vertex to the light position.

2. glLight, know what each of the parameters does (p189)

3. vertex color (emission (+) global ambient scaled by the material (+) am-
bient diffuse and specular of all lights scaled by the material accounting
for attenuation) (p215)

4. The global ambient component is: ambient(global) * ambient(material) in
a component wise multiplication. (p216)

5. contribution = attenuation factor * spotlight effect * (ambient term +
diffuse term + specular term)

6. attenuation factor = 1
kc+kl·d+kq ·d2 (p216)

7. Spotlight effect

– 1 if GL SPOT CUTOFF is 180.0.

– 0 if the vertex is outside the cone of illumination (use ~v ·
~d to make

this determination)

– max(~v ·
~d, 0)GL SPOT EXPONENT

8. Ambient Term = ambient light · ambient material (p217)

9. Diffuse Term = max (~L · ~n, 0) · diffuse light · diffuse material (p217)

10. Specular Term (p218)

– If ~L · ~n is 0, then Specular Term is 0.

– ~s is the sum of the two unit vectors which point between the vertex
and the light position and the vertex and the viewpoint. This vector
is then normalized.

– Specular Term = max (~s ·~n,0)GL SHININESS
· specular light · specular

material

• Using Alpha (blending) (p 227) glBlendFunc(GL SRC COLOR, GL DST COLOR),
glEnable(GL BLEND)

• Fog (p 255–259), glFog know what each of the parameters does (p259)

– f = e−(density·z)

– f = e−(density·z)2

– f −
end−z

end−start

• Polygon Offset (p268–270)

– Why is it needed?

– When is it used?

– What does a function call like glPolygonOffset(1,1) do compared to
glPolygonOffset(-1,-1)?

• Display Lists (p271–285)

– Why are they used?

– What do they do?

– How are they used? (glNewList,glEndList,glCallList)

• Texture Mapping (p359–370)

– What is a texture map?

– Texture Coordinates (p414–416)

– Clamp/Repeat (p 417–420)

– Automatic Texture Generation (p422)

• Framebuffers (p451)

– Color Buffer(p455)

– Depth Buffer (Depth Func) p455,469–470

– Stencil Buffer (Stencil Func and Stencil Op) p464–468

• Wire Frame Images (p269–270)

• Hidden Line Removal (p604–605)

• Ray Tracing

– Ray Tracing vs. Z-buffer (visible surfaces at the pixel level)

– More powerful routine for: shadows, reflection, refraction

– Viewing (u,v,w)

– The Ray (p(t) = ~origin + t · ~direction)

– i and j are pixel indices. nx and ny are the number of pixels in the screen.
To find

– us = left + (right − left) ∗ i+0.5
nx

– vs = bottom + (top − bottom) ∗ j+0.5
ny

– ws = near

– gaze = at−eye

|at−eye|
, w = −

g

|g|
, u = up×w

|up×w|
, v = w×u

|w×u|
,

– Given u, v, w, us, and vs, the world coordinate position on the screen is:
s = eye + us ∗ u + vs ∗ v + ws ∗ w

– The ray is then p(t) = eye + t ∗ (s − eye)

– We use this ray to intersect every object in the scene. This is done by
solving the position of the ray against a position equation for a particular
piece of geometry. A circle has the formula (p − center) · (p − center) −
radius2 = 0. Solving the ray equation in for p gives a quadratic equation
for t. Solving this, we can determine the points of intersection (if any) the
ray has with the sphere. If there are two roots, the smallest positive root
is the intersection point we require. Given the value of t, we can solve for
the position p(t) if needed.

