MAT 450 — Operating Systems, Spring 2005

Review Sheet #3

e Chapter 7 - Deadlock

— Why is deadlock a problem? (p247)

— Four simultaneous conditions for deadlock to occur

1.
2.
3.
4.

Mutual exclusion
No preemption
Hold and wait
Circular Wait

— System Resource Allocation Graph (p249-251)

*

*

A set of vertices V' and a set of edges F

Vertices contain active processes P = {P;...P,} (denoted as circles)
and system resources R = {R;...R,} (denoted as squares).

Each instance of a resource is denoted with a separate dot inside that
resources’ square.

Edges contain request edges and assignment edges. Request edges
point to the resources’ square. Assignment edges point from a partic-
ular resource instance dot.

P, — R; is a request edge. It means that a processes P; has requested
resource ;.

R; — P, is an assignment edge. It means that a resource R?; has been
allocated to a process P;

A graph with no cycle means that there is no deadlock. A graph with
a cycle means deadlock may exist. In single instance resource systems,
a cycle means that dead lock does exist.

— Handling Deadlock (p252) - Deadlock Prevention, Deadlock Avoidance,
Deadlock Detection and Recovery, Ignoring Deadlock

— Deadlock Prevention (p253) - prevent deadlock by removing one of the
four essential components.

1.
2.

mutual exclusion - useful but cannot be done for all resources

hold and wait - (i) request only when it has none or (ii) access all
resources before execution may begin

. no preemption - (i) implicitly release all resources when a resource

requested is not available or (ii) take resources from processes that
have them allocated and that are also waiting

. circular wait - (i) Impose a strict order on resources and force each

process to request resources in that order. Define a function F(R;)
which returns this order.

— Deadlock Avoidance (p256) - Use the resource allocation graph to avoid
deadlock at all times. (safe state, safe sequence)

— Deadlock avoidance with single instance resources (p258).
* Add a claim edge P, — — > R; to symbolize that P; may request R;
in the future.

x A process which begins execution with no resource will add claim edges
for every resource it may acquire in the future.

* With this addition, we avoid deadlock by allowing R; to be allocated
to P; only if this results in a graph with no cycles.

— Deadlock avoidance with multiple instance resources (p259) - Banker’s
Algorithm

% 1 processes, m resources. Set up four data structures: Available[m],

Mazx|n|[m], Allocation[n][m], and Need[n|[m].

« Safety Algorithm (p260)

1. Work[m], Finish[n]. ¥j € m,Work[j] = Available[j],
Vi € n, Finish[i] = false

2. Find an ¢ such that

(a) Finishli] = false and
(b) Vj € m, Need|i][j] < Work][j]
If no such i exists, goto Step 4, else goto Step 3 with ¢

3. Set Finishli]| = true and V5 € m, Work[j] = Work[j]+Allocation]i][5]
Go to Step 2.

4. If Vi € n, Finish[i] == true, then the system is in a safe state
and the safe sequence is the order in which each ¢ was found.
Otherwise, the system is unsafe.

* Resource Request Algorithm (p261)
« When a process P; wants resources, it will send a Request|m|. This
request is granted if:

1. If Vj € m, Request[j] < Need|[i][j] Go To Step 2. Otherwise raise
an error since P; has exceeded its claimed maximum needed.

2. If Vj € m, Request[j] < Available[j] Go to Step 3. Otherwise, P;
must wait since there are not enough resources ready yet.

3. Do atemporary allocation of resources to P; by doing the following:

(a) Vj € m, AvailableTemp|j] = Available]j] — Request][j]

(b) V5 € m, AllocationTempli][j] = Allocation[i][j] + Request[j]

(¢) V5 € m, NeedTempli][j] = Need[i][j] — Request[i][j]
With these temporary data structures, run the Safety Algorithm.
If the system is determined to be in a safe state, then these arrays
become permanent and P; is allocated the resources it desires.
Otherwise, if the new state is unsafe then P; must wait to be
allocated its resources.

— Deadlock Detection and Recovery (p262)

*

*

For single instances - uses a resource-allocation graph and find cycles

For multiple instances, (when a process requests resources, run a
modified safety algorithm. This modified safety algorithm will use
Request[n][m] for the currently requested resources of each process in
place of Need|n|[m]. If at Step 4, Finish[i]| == false then deadlock
has been detected. In particular, the process P; where Finish[i] ==
false is a deadlocked one.

Recovery from Deadlock (p266) - process termination or resource pre-
emption

process termination: abort all deadlocked processes or abort one pro-
cess at a time until deadlock is eliminated.

resource preemption: (i) select a victim based on number of resources
held by a deadlocked process, amount of time the process has executed,
and the number of times the process was already chosen as a victim,
(ii) rollback the process to a safe state, (iii) ensure starvation does not
occur

