
MAT 450 — Operating Systems, Spring 2005

Review Sheet #3

• Chapter 7 - Deadlock

– Why is deadlock a problem? (p247)

– Four simultaneous conditions for deadlock to occur

1. Mutual exclusion

2. No preemption

3. Hold and wait

4. Circular Wait

– System Resource Allocation Graph (p249–251)

∗ A set of vertices V and a set of edges E

∗ Vertices contain active processes P = {P1...Pn} (denoted as circles)
and system resources R = {R1...Rn} (denoted as squares).

∗ Each instance of a resource is denoted with a separate dot inside that
resources’ square.

∗ Edges contain request edges and assignment edges. Request edges
point to the resources’ square. Assignment edges point from a partic-
ular resource instance dot.

∗ Pi → Rj is a request edge. It means that a processes Pi has requested
resource Rj.

∗ Rj → Pi is an assignment edge. It means that a resource Rj has been
allocated to a process Pi

∗ A graph with no cycle means that there is no deadlock. A graph with
a cycle means deadlock may exist. In single instance resource systems,
a cycle means that dead lock does exist.

– Handling Deadlock (p252) - Deadlock Prevention, Deadlock Avoidance,
Deadlock Detection and Recovery, Ignoring Deadlock

– Deadlock Prevention (p253) - prevent deadlock by removing one of the
four essential components.

1. mutual exclusion - useful but cannot be done for all resources

2. hold and wait - (i) request only when it has none or (ii) access all
resources before execution may begin

3. no preemption - (i) implicitly release all resources when a resource
requested is not available or (ii) take resources from processes that
have them allocated and that are also waiting

4. circular wait - (i) Impose a strict order on resources and force each
process to request resources in that order. Define a function F (Ri)
which returns this order.



– Deadlock Avoidance (p256) - Use the resource allocation graph to avoid
deadlock at all times. (safe state, safe sequence)

– Deadlock avoidance with single instance resources (p258).

∗ Add a claim edge Pi − − > Rj to symbolize that Pi may request Rj

in the future.

∗ A process which begins execution with no resource will add claim edges
for every resource it may acquire in the future.

∗ With this addition, we avoid deadlock by allowing Rj to be allocated
to Pi only if this results in a graph with no cycles.

– Deadlock avoidance with multiple instance resources (p259) - Banker’s
Algorithm

∗ n processes, m resources. Set up four data structures: Available[m],
Max[n][m], Allocation[n][m], and Need[n][m].

∗ Safety Algorithm (p260)

1. Work[m], Finish[n]. ∀j ∈ m, Work[j] = Available[j],
∀i ∈ n, F inish[i] = false

2. Find an i such that

(a) Finish[i] = false and

(b) ∀j ∈ m, Need[i][j] ≤ Work[j]

If no such i exists, goto Step 4, else goto Step 3 with i

3. Set Finish[i] = true and ∀j ∈ m, Work[j] = Work[j]+Allocation[i][j]
Go to Step 2.

4. If ∀i ∈ n, F inish[i] == true, then the system is in a safe state
and the safe sequence is the order in which each i was found.
Otherwise, the system is unsafe.

∗ Resource Request Algorithm (p261)

∗ When a process Pi wants resources, it will send a Request[m]. This
request is granted if:

1. If ∀j ∈ m, Request[j] ≤ Need[i][j] Go To Step 2. Otherwise raise
an error since Pi has exceeded its claimed maximum needed.

2. If ∀j ∈ m, Request[j] ≤ Available[j] Go to Step 3. Otherwise, Pi

must wait since there are not enough resources ready yet.

3. Do a temporary allocation of resources to Pi by doing the following:

(a) ∀j ∈ m, AvailableTemp[j] = Available[j] − Request[j]

(b) ∀j ∈ m, AllocationTemp[i][j] = Allocation[i][j] + Request[j]

(c) ∀j ∈ m, NeedTemp[i][j] = Need[i][j] − Request[i][j]

With these temporary data structures, run the Safety Algorithm.
If the system is determined to be in a safe state, then these arrays
become permanent and Pi is allocated the resources it desires.
Otherwise, if the new state is unsafe then Pi must wait to be
allocated its resources.



– Deadlock Detection and Recovery (p262)

∗ For single instances - uses a resource-allocation graph and find cycles

∗ For multiple instances, (when a process requests resources, run a
modified safety algorithm. This modified safety algorithm will use
Request[n][m] for the currently requested resources of each process in
place of Need[n][m]. If at Step 4, Finish[i] == false then deadlock
has been detected. In particular, the process Pi where Finish[i] ==
false is a deadlocked one.

∗ Recovery from Deadlock (p266) - process termination or resource pre-
emption

∗ process termination: abort all deadlocked processes or abort one pro-
cess at a time until deadlock is eliminated.

∗ resource preemption: (i) select a victim based on number of resources
held by a deadlocked process, amount of time the process has executed,
and the number of times the process was already chosen as a victim,
(ii) rollback the process to a safe state, (iii) ensure starvation does not
occur


