MAT 250 — Introduction to Computer Organization and Architecture, Fall 2004

Final Review Sheet (#3)

- See Review Sheet #1 and Review Sheet #2
- Memory Chapter 7 p 243
 - Moore's Law p243
 - Memory size increase rates p243
 - Memory speed increase rates p243
 - Memory Hierarchy Helps solve the memory "gap" p243
 - Registers, Cache, Main Memory, Secondary Stage (hard drive) p244
 - Relative amts used, costs, and rough access times p244
 - RAM Random Access Memory p245
 - SRAM flip-flops p245
 - DRAM capacitors p245
 - Comparison of DRAM and SRAM p245
 - ROM, PROM (examples) p252
 - locality principle p254
 - temporal locality (definition and examples) p254
 - spatial locality (definition and examples) p254
 - Cache Memory small but fast p254
 - What is kept in the Cache? Where is the Cache? p254
 - What are: hits, misses p257
 - Associative Mapped Cache each slot can access any address p255
 - Associative Mapped Caches (diagram, purpose, advantages, disadvantages)
 p256
 - Associative Mapped Cache (tag, blocks, words, valid bits, dirty bits) p256
 - Replacement Policies descriptions and examples (LRU, FIFO, LFU, random, optimal) p258
 - Direct Mapped Cache each slot can access specific addresses p259
 - Direct Mapped Caches (diagram, purpose, advantages, disadvantages) p259
 - Cache Hit Ratio definition, formula, importance p264
 - Effective Access Time definition, formula, importance p264